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Abstract

This paper revisits the classical monopolistic screening framework of Mussa and

Rosen (1978) to explore the effects of costly communication between sellers and buyers

concerning service options. The seller cannot rely on a fixed menu for customer self-

sorting and, instead, must engage in direct communication with buyers prior to service

provision. I indicate the required regularity assumptions under which the seller’s prob-

lem gets reduced to costly information acquisition about the buyer’s virtual type. The

analysis highlights conditions under which the seller communicates more than is so-

cially optimal, exacerbating distortions in the expected service quality. Moreover, the

study demonstrates that the seller can benefit from introducing ex-post participation

constraints when faced with communication costs.
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1 Introduction

The conventional model of monopolistic screening by Mussa and Rosen (1978) suggests that

the monopolist achieves segmentation of different customer types by letting them choose

from a menu. The monopolist designs the most profitable menu, anticipating future choices

made by every customer type. However, the quality of services can sometimes only be fully

understood once they are already delivered.1

In this paper, I consider a model where the seller cannot rely on customers to self-sort via

a fixed menu. Instead, she must communicate with them to understand their requests and

subsequently offer an appropriate combination of quality and price. Following the current

literature, I model communication as a flexible but costly acquisition of information about

the buyer’s requests. Better information enables the seller to discern the buyer’s message

with greater precision but is more expensive. Communication costs may represent various

aspects of customer service, such as the time employees spend interacting with each client or

the expenses associated with staff training.

Given the outcome of communication, the seller determines what quality she produces

and at what price she sells. In the benchmark version of the model, customers do not have

the option to reject the offer at this stage; they must pay the full amount for the service upon

provision. I show that when the communication costs are proportional to entropy reduction,

the seller’s problem can be reduced to that of a rationally inattentive agent who gathers

costly information about the customer’s (virtual) type. This problem can be solved with

existing tools from the optimal persuasion literature, e.g. by concavification method from

Kamenica and Gentzkow (2011). Consequently, I show that optimal communication relies

on, at most, twice as many different signals as the number of prospective buyer types. The

number of quality levels on the optimal menu exceeds the number of types at most by one.

After analyzing communication outcomes, I assess their welfare properties. In particular,

I compare a seller’s optimal communication to that of a social planner, who bears the same

communication costs. For a binary buyer type, I show that the seller acquires too much

information compared to the social optimum whenever the marginal production costs are

convex. This informational distortion further exacerbates the expected quality of service

compared to the costless communication benchmark, moving the equilibrium outcome further

away from the social optimum. Intuitively, this is because the social planner does not care

about the exact distribution of surplus between the two sides of the market. In contrast, the

seller perceives communication errors as more damaging, given that they lead to inaccuracies

1For example, Zeithaml, Parasuraman, and Berry (1990) highlight that the tangible aspects of services
account only for 11% of perceived service quality. Observing such non-tangible service quality parameters
before the service is delivered is particularly challenging.
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in both quality and prices.

I then consider another welfare exercise. I assume the planner only cares about expected

realized gains from trade within the seller’s optimal mechanism and does not internalize

the communication costs borne by the seller. I show that with a binary type, the realized

expected gains from trade may either increase or decrease with the cost of communication,

depending on the curvature of the marginal costs of production and the frequency of the

higher type in the population. These two parameters determine how society balances out the

trade-off between gaining improved market information (which can result in better-matched

quality offers) and the consequent distortion introduced by greater price discrimination.

Finally, I show that the seller does not necessarily benefit from the absence of ex-post

participation constraints. Specifically, I consider a scenario where the seller still cannot

use fixed menus but can make a non-binding offer after communicating with the buyer.

Interestingly, allowing the buyer to leave can be profitable to the seller, as she may use the

buyer’s decision as an additional source of information about his preferences. Even though

this type of communication is also costly (as it potentially entails foregone profits from a

leaving buyer), it can still be cheaper than direct communication. I illustrate these main

findings in a simplified example below.

1.1 Simplified Example

Profit Maximizing Communication. Suppose a hairdresser sells her services of varying quality

levels q ∈ R+ and bears quadratic production costs c(q) = q2/2. The hairdresser encounters

two types of customers, each occurring with equal probability. Specifically, a high-type

customer H evaluates quality q at a value of θH · q, while a low-type customer L assesses

the same quality at a value of θL · q, with 2θL > θH > θL. Before providing the service,

the hairdresser asks the customer for their preferences, and the customer gives one of two

messages: either h or l. The hairdresser may mishear the communicated message. For the

simplified example, let precision be captured by a single parameter: α ≥ 0.5. In particular,

with probability α the customer’s message is transmitted correctly, while with probability

1− α the seller hears the opposite message instead.

The seller specifies the quality and price for each message she hears {h, l} and determines

how much attention she pays to her customers’ demands. Being attentive is costly (for

instance, it requires the hairdresser to spend more time with her client). To be specific, I

assume that the seller incurs a cost of κ · (α−0.5)4/2 when she listens with an accuracy of α.

The customer decides whether he wants to participate in communication and which message

to report.
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I now describe an optimal solution to the seller’s problem with communication. In the

standard Mussa and Rosen (1978) setup with free communication, a seller with quadratic

production costs would serve each buyer type with a quality equal to his virtual value. In

my setting, the seller has inaccurate information about the buyer’s type and instead chooses

the quality level equal to the expected buyer’s virtual type. The virtual type is defined in the

standard way. In the context of the example, the virtual type of H is simply θH , while the

virtual type of L is given by θL − (θH − θL). Given the signal structure, with probability α

the message coincides with the buyer’s type; hence, the quality for each signal is given by:

q∗h(α) = αθH + (1− α)(2θL − θH)

q∗l (α) = (1− α)θH + α(2θL − θH)

The prices for each signal are set so that the expected transfer paid by each type satisfies the

standard envelope condition. Specifically, I set the prices so that the lower type gets their

surplus fully extracted (in expectation) while ensuring that the higher type does not want to

misrepresent her type. The prices that achieve this are:

p∗h(α) = θL [(1− α)qh(α) + αql(α)] + αθH(qh(α)− ql(α))

p∗l (α) = θL ((1− α)qh(α) + αql(α))− (1− α)θH(qh(α)− ql(α))

It now only remains to determine the optimal level of communication precision α∗. Given

the quality and prices above, the seller’s expected profit given α is:

Π∗(α) ≡ 0.5 (p∗h(α)− c(q∗h(α))) + 0.5 (p∗l (α)− c(q∗l (α)))

= 0.25 (αθH + (1− α)(2θL − θH))
2 + 0.25 ((1− α)θH + α(2θL − θH))

2

and the optimal level of communication precision is obtained by solving:

max
α∈[0.5,1]

Π∗(α)− κ · (α− 0.5)4/4

α∗ = min{1, 0.5 + 2(θH − θL)/
√
κ}

Socially Optimal Communication. Suppose now the service provider is a benevolent planner

who instead maximizes the total social surplus: expected gains from trade net of communi-

cation costs. In this case, the social planner provides the optimal level of quality given her
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belief about the buyer’s true, not virtual type:

qSOh (α) = αθH + (1− α)θL

qSOl (α) = (1− α)θH + αθL

Given communication precision α, expected gains from trade are then given by:

GT (α) ≡ 0.25 (αθH + (1− α)θL)
2 + 0.25 ((1− α)θH + αθL)

2

The socially optimal communication accuracy αSO solves:

max
α∈[0.5,1]

GT (α)− κ(α− 0.5)4/4

αSO = min{1, 0.5 + (θH − θL)/
√
κ}

Hence, the seller overinvests in communication precision compared to the social optimum.

Intuitively, this is because the difference between the two virtual types is greater than that

of the true types. As a result, the seller has greater incentives to discern the different buyer

types better and overinvests in communication accuracy.

Consequently, the presence of costly communication introduces another source of distor-

tion for the expected quality served to every buyer. Let QSO
L denote the expected quality

that type L gets in the socially optimal mechanism, and Q∗
L — the expected quality of the

lower type in the seller’s optimum. The difference between the two can be decomposed as

follows:

QSO
L −Q∗

L =

screening distortion︷ ︸︸ ︷
(1− αSO)

(
qSOh

(
αSO

)
− q∗h

(
αSO

))
+ αSO

(
qSOl

(
αSO

)
− q∗l

(
αSO

))
+(1− αSO)q∗h

(
αSO

)
+ αSOq∗l

(
αSO

)
− (1− α∗)q∗h (α

∗)− α∗q∗l (α
∗)︸ ︷︷ ︸

informational distortion

The screening distortion is the same as in the standard model. A profit-maximizing seller

distorts the quality downwards since the virtual type of the L buyer is lower than his true

marginal utility. The informational distortion component is a novel property of the setup

with endogenous choice over communication accuracy. Observe that it is positive for the low

type. Indeed, note that the function

f(α) = (1− α)q∗h(α) + αq∗l (α) = 2(1− α)αθH + (2θL − θH)
[
(1− α)2 + α2

]
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is decreasing in α on [0.5, 1]. Since the profit-maximizing seller chooses a higher precision of

communication, α∗ > αSO, the information distortion for the L type is positive.

In general, the average value of information distortion depends on the curvature of the

marginal costs of quality production: with quadratic production costs, marginal costs are lin-

ear in quality, and the average informational distortion is zero. Alternatively, if the marginal

production costs are strictly convex, the average informational distortion is positive (unless

the social planner chooses a fully informative communication precision).

Providing Quote Before the Service. To finish the simplified example, I illustrate the role

of potential ex-post individual rationality restrictions. Consider a scenario where the buyer

could leave after observing the quality-price pair offer (or, similarly, after understanding

the message was delivered to the seller). In this setup, I also allow the seller to charge a

consultation fee of p0 that the buyer has to pay if he wishes to engage in communication.2

As before, the seller also determines the quality of communication precision α and bears the

communication costs.

Consider the following mechanism: after hearing the signal h, the seller offers an efficient

quality for type H and charges a price that makes type L leave.

q∗∗l (α) = θL − α(θH − θL)

p∗∗l (α) = θLq
∗∗
l (α)

q∗∗h = θH

p∗∗h (α) = p∗∗l (α) + α(q∗∗h − q∗∗l (α))

resulting in the expected profit of

Π∗∗(α) = 0.25 (θL − α(θH − θL))
2 + 0.25αθ2H

One can verify that for θH = 1, θL = 0.6, κ = 3, Π∗∗(α∗) ≈ 0.252 > Π∗(α∗) ≈ 0.248, so

that the seller benefits by letting the low type to reject the quote. Intuitively, the buyer’s

decision to leave is an additional source of information for the seller (at the cost of foregoing

profit from the lower type). Depending on the parameters, it may be profitable to utilize this

information source instead of direct communication.

2In the benchmark case, the seller would not benefit by charging a consultation fee, so it was omitted.
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1.2 Related Literature

The paper combines a classic mechanism design set-up of a Mussa and Rosen (1978) with a

rational inattention/experimentation framework (with seminal work by Sims (2003)).

A growing body of literature analyses the effects of costly communication or information

acquisition in the seller-buyer relationship and adopts techniques from rational inattention

models. The papers by Mensch and Ravid (2022), Mensch (2022), Thereze (2022) investigate

the setups where buyers accrue costs to learn their preferences, unveiling a common theme

of quality underprovision due to endogenous information gathering. Other papers analyze

bargaining set-ups where the buyer is rationally inattentive and show that endogenous in-

formation choice impedes the trade. Ravid, Roesler, and Szentes (2022) show that when the

buyer is marginally inattentive to her valuation for the product, the equilibrium converges

to the worst free-learning equilibrium. In Ravid (2020), the buyer is inattentive toward the

seller’s offer. Ravid (2020) shows that trade collapses can only be avoided in equilibrium

when the attention costs are sufficiently small.

Quite a few papers also consider limited and costly communication in mechanism design

(see Segal (2006) for a review). Green and Laffont (1982) characterize incentive-compatible

mechanisms where the reports by agents in a mechanism get distorted in a predetermined

manner. I instead consider a flexible environment where the seller determines the degree

of noise in the messages. Blumrosen, Nisan, and Segal (2007) and Kos (2012) consider

coarse communication protocols in auctions, where the economy is restricted to using a

finite number of messages. They show that the optimal mechanism is a priority protocol,

where each bidder reports whether their value is above a certain threshold. In addition,

Kos (2012) establishes that a revenue-maximizing seller would distribute a fixed number of

messages evenly between different bidders. Mookherjee and Tsumagari (2014) focus on the

communication organization in a team of workers, given that the length of communication

and its precision are limited. They also establish that the designer’s optimal mechanism can

be obtained by considering the problem of optimal communication, given that the workers’

virtual type drives the designer’s value.

There is a large body of literature that analyses the effects of rational inattention on prices

in the context of macroeconomic models (see Mackowiak and Wiederholt (2009), Matějka

(2016) and Maćkowiak, Matějka, and Wiederholt (2023) for a review). These models are

focused on inattention towards global economic parameters and do not consider a price-

discriminating firm.

The paper also relates to the costly monitoring literature (e.g. Townsend (1979), Geor-

giadis and Szentes (2020), Li and Yang (2020)). In these papers, the principal’s ability to
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discriminate between different actions chosen by the agent similarly depends on how much

attention they decide to pay to the agent’s action itself or the action’s outcome. In particular,

Georgiadis and Szentes (2020) also considers flexible information framework and decomposes

the principal’s problem into incentives provision/and information acquisition problems, which

is the same approach I use in this paper.

Methodologically, I borrow many tools from Denti, Marinacci, and Rustichini (2019),

Mensch (2021), Yoder (2022).

2 Model

This section describes the model with flexible communication between a seller and a buyer.

The market consists of a single seller (she) and a buyer (he), whose type is randomly drawn

from a finite set Ω = {1, . . . , N} according to a full-support distribution µ0 ∈ ∆Ω. The buyer

is privately informed about his type. The seller designs a product for sale. Specifically, she

chooses a quality q ∈ R+ and the selling price of a product. The seller bears production

costs c : R → R+, which is three times continuously differentiable and is strictly convex

function, with c′(0) = 0 and limq→∞ c′(q) = ∞. Seller’s profit from a quality q sold at

transfer p is p−c(q). Buyer of type ω derives the following utility when purchasing a product

of quality q at price p: uB(ω, q, p) = θ(ω) × q − p for some θ : Ω → R++ mapping buyer

types to marginal utility over quality. Without loss, I assume that θ is strictly increasing in

its argument. Suppose that in the absence of a sales agreement, both sides of the market

receive zero payoffs.

I assume that the seller provides her product after communicating with the buyer. Com-

munication provides some (noisy) information about the buyer’s reported message and is

costly for the seller. In the baseline version of the model, I assume the buyer can decide to

walk away from the seller before communication is initiated but not after he observes the

actual product. To interpret, the seller’s product can be some service, the final result of

which can only be observed after the service is already made. In the next two sections, I

formally describe the model.

2.1 Communication

I assume communication is noisy, and the seller may mishear any message the buyer intends

to communicate. The seller chooses how attentive she is when communicating with the buyer.

Formally, the seller chooses a listening protocol, consisting of the set of allowable messages

for the buyer (M) and seller’s listening rule, which describes the distribution over signals
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that she ends up hearing for each potential message of the buyer (σ : M → ∆(S)). In other

words, instead of getting message m directly, the seller hears some signal from S according

to distribution σ(m). I denote the space of all possible listening rules for a given message

space M as Σ̃M .

The set of all possible messages M is some finite exogenously given set, such that the

producer could at least allow buyers to communicate their type, that is, Ω ⊆ M.3 The set

of signals, denoted as S, is exogenously given. I assume S is a Polish space rich enough to

induce any distribution over posterior beliefs.

I assume the buyer may decide to walk away before communication is initiated. Let

Ωp ⊆ Ω denote the set of buyer types who are engaged in communication. Every participating

type decides on their report to the seller. I summarize the buyer’s choice for every type by

a reporting rule function α : Ωp → M . Denote AM,Ωp as the set of all reporting rules given

that Ωp types participate in the communication. I call a tuple (M,σ,Ωp, α) a communication

protocol and denote the set of all possible communication protocols as C.
Communication is costly for the seller. In particular, the better the seller’s informa-

tion about the buyer’s type (after communication), the higher the communication costs.

Communication costs depend on the whole communication protocol and are captured by

a functional H̃ : C → R+ ∪ +∞. For tractability, I assume communication costs satisfy

likelihood-separability (Denti, Marinacci, and Rustichini (2019)):

Definition 1. (Likelihood Separability) Say that H̃ : C → R+∪+∞ is likelihood separable at

Ωp if there exists a sublinear, lower-semicontinuous function function h̃ : RΩp

+ → R+∪{+∞},
such that for every communication protocol (M,σ,Ωp, α):

H̃(M,σ,Ωp, α) =

∫
S

h̃

((
dσ(α(ω))

dγ
(s)

)
ω∈Ωp

)
dγ(ds)− h̃(1)

In the remainder of the paper, I assume H̃ is likelihood separable at all Ωp ∈ 2Ω. In

addition, I impose that it is easier for the seller to communicate with fewer buyer types. As

a normalization, she bears no costs when communicating with a single buyer type.

Definition 2. (Monotonicity in Participants ) Say that H̃ : C → R+ ∪ +∞ is monotone in

participants , if for every communication protocol (M,σ,Ωp, α) ∈ C it satifies:

H̃(M,σ,Ωp, α) ≤ H̃(M,σ,Ω′
p, α|Ω′

p
), ∀Ω′

p ⊆ Ωp

H̃(M,σ,Ωp, α) = 0, if |Ωp| = 1

3This is simply for convenience. It would be enough for M to include |Ω| unique elements, which we could
relabel if necessary.

8



Here α|Ω′
p
is a restriction of α to Ω′

p. An important example of the communication

costs that satisfy both monotonicity in participants and likelihood separability is entropy

reduction.

Example 1.

h̃e

((
dσ(α(ω))

dγ

)
ω∈Ωp

)
=
∑
ω∈Ωp

dσ(α(ω))µ0(ω)

dγ
log

(
dσ(α(ω))µ0(ω)

dγ

)

2.2 Payoffs

After communicating with the buyer, the seller provides a single product for every signal she

gets, summarized by a selling rule. The selling rule consists of a quality schedule q̃ : S → R+

and transaction price schedule p̃ : S → R, which prescribe the quality-price pair for every

possible signal realization. Denote the space of all possible sales rules as Q. In addition, I

allow the seller to charge an up-front payment p0 ∈ R from any customer who chooses to

initiate communication as a consultation fee.

For a given communication protocol, selling rule, and an up-front payment, the seller’s

payoff ŨS : C × Q× R → R is her expected profit net of the communication costs:

ŨS((M,σ,Ωp, α), (q̃, p̃), p0) =
∑
ω∈Ωp

µ0(ω)

[
p0 +

∫
S

p̃(s)− c (q̃(s)) dσ(ds|α(ω))

−H̃(M,σ,Ωp, α)

]
Similarly, the buyer’s payoff for every type ŨB : Ω×C×Q×R → R is her expected utility

from the product offered by the seller as a result of communication, net of the consultation

fee whenever the buyer chooses to initiate communication:

ŨB(ω, (M,σ,Ωp, α), (q̃, p̃), p0) = 1{ω ∈ Ωp} ×
[∫

S

uB(ω, q̃(s), p̃(s))dσ(ds|α(ω))− p0

]

2.3 Timing

The game unfolds as follows:

1. Seller announces the set of messages and her listening rule ⟨M,σ⟩, selling rule ⟨q̃, p̃⟩
and an up-front payment p0;

2. Consumer decides whether to participate. If they decide to participate, they pay p0. If

they decide to leave, the game ends;
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3. Whenever consumer decides to participate, they decide which message m ∈M to send

to the seller;

4. Seller listens to m and observes a realization of s according to σ(m). The buyer pur-

chases q̃(s) at price p̃(s).

2.4 Seller’s Problem

Seller chooses a mechanism consisting of communication protocol, selling rule, and an up-

front payment to maximize her payoff ŨS. I say that the mechanism is feasible if all buyer

types are willing to make their participation decision and reports as specified by the commu-

nication protocol.

Definition 3 (Feasible Mechanism). Say that a mechanism ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ is fea-
sible if

∀ω ∈ Ωp : max
m∈M

{∫
S

uB(ω, q̃(s), p̃(s))dσ(ds|m)

}
≥ p0 (P1)

∀ω /∈ Ωp : max
m∈M

{∫
S

uB(ω, q̃(s), p̃(s))dσ(ds|m)

}
≤ p0 (P2)

α ∈ Argmax
α∈AM,Ωp

∑
ω∈Ωp

∫
S

uB(ω, q̃(s), p̃(s))dσ(ds|α(ω))

 (IC)

The inequalities P1, P2 ensure that participation decisions are optimal for every buyer

type, given the seller’s announced listening and selling rules. IC ensures that every partici-

pating buyer type sends a message that maximizes his expected surplus. I denote the set of

all feasible mechanisms as F .

Let Ũ∗
S denote the value of the seller’s problem:

Ũ∗
S = sup

⟨(M,σ,Ωp,α),(q̃,p̃),p0⟩∈F
ŨS((M,σ,Ωp, α), (q̃, p̃), p0)

In the next section, I review the solution to the seller’s problem.

3 Direct Learning

In this section, I state and prove the paper’s main result. I show that under certain regularity

conditions, the seller’s problem is equivalent to information acquisition about the buyer’s

(virtual) type. In particular, the seller’s problem can be restated as follows: First, the seller
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decides on Ωp, the buyer types participating in communication and subsequent purchase.

Second, the seller decides on an information acquisition policy τ ∈ ∆(∆(Ωp)) that informs

her about the buyer’s type. The information policy is chosen to maximize expected gains

from trade at the buyer’s posterior virtual type net of the communication costs necessary to

induce the desired amount of information τ .

Before proceeding with the analysis, it is convenient to impose a revelation principle on

communication.

Definition 4. Say that communication protocol (M,σ,Ωp, α) is direct, if M = Ωp and the

reporting strategy is truthful α(ω) = αtr(ω) ≡ ω,∀ω ∈ Ωp.

Given that the buyer’s strategy is deterministic, the usual revelation principle applies: if

a feasible mechanism ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ exists, then a mechanism with direct commu-

nication ⟨(Ωp, σ,Ωp, α
′), q̃, p̃, p0)⟩, is also feasible. Furthermore, this direct communication

mechanism produces an equivalent expected profit for the seller. Likelihood separability en-

sures that communication costs from the two communication protocols ((M,σ,Ωp, α)) and

(Ωp, σ,Ωp, α
′) also coincide.

I now consider the set of participating buyer types. Suppose that there exist two types

ω and ω + 1, such that the higher of these two is not served. The only scenario when this

is consistent with both types’ participation constraint is when ω is effectively not served

(gets zero expected quality). Given that the communication costs are increasing in the set of

participating buyers, the seller would prefer for ω not to participate. Thus, it is without loss

of optimality to restrict attention to threshold mechanisms — when the seller only chooses

the lowest participating buyer type.

Definition 5. Say that ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ is a threshold mechanism, if ∃
¯
ω ∈ Ω, such

that Ωp = {
¯
ω, . . . , N}.

Lemma 1. If H̃ : C → R+ ∪ +∞ is monotone in participants and likelihood-separable,

then it is without loss to consider threshold mechanisms with direct communication only.

That is, for any feasible mechanism, there exists a feasible threshold mechanism with direct

communication that achieves at least the same seller’s payoff.

Proof. See Appendix A.

I now restrict attention to threshold mechanisms with direct communication. With abuse

of notation, I write (
¯
ω, σ) for a communication protocol ({

¯
ω, . . . , N}, σ, {

¯
ω, . . . , N}, αtr). For
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any threshold mechanism, the buyer’s virtual type can be defined in a usual way:

ψ(ω) =

θ(ω)−
Pr(ω′ > ω)

µ0(ω)
[(θ(ω + 1)− θ(ω)] , if ω < N

θ(ω), if ω = N.

Now, imagine that the seller only chooses quality and communication protocol, while the

price paid by type ω for the received quality q is exogenously set to equal ψ(ω)q whenever

quality q is served. In this auxiliary problem, the seller chooses a communication protocol

(M,σ,Ωp, α) ∈ C and quality schedule q̃ : S → R+ to maximize the following payoff:

∑
ω≥

¯
ω

µ0(ω)

[∫
S

ψ(ω)q̃(s)− c(q̃(s))dσ(ds|α(ω))− H̃(
¯
ω, σ)

]
(1)

In Lemma 4 in Appendix A, I verify that for any feasible threshold mechanism ⟨(M,σ,Ωp,

α), (q̃, p̃), p0⟩, the seller can achieve no higher payoff than that specified by Equation (1). I

now analyze the maximal payoff given by Equation (1) to deduce the upper boundary on the

value of the seller’s problem. I then show how the same payoff is achievable with a feasible

mechanism to complete the analysis.

Following the standard approach, the problem of maximizing Equation (1) can be restated

as the choice of information policy, where the seller learns about the buyer’s type ω among

the participating types Ωp. Indeed, note that the auxiliary problem is equivalent to

sup

¯
ω

sup
σ

sup
q̃

∫
S

∑
ω≥

¯
ω

µs(ω) [ψ(ω)q̃(s)− c(q̃(s))] d
∑
ω′≥

¯
ω

σ(ds|α(ω′))µ0(ω
′)

−Pr(ω ≥
¯
ω)H̃(

¯
ω, σ)

where µs(ω) is a posterior belief of type ω given the buyer-type is among those participating

and given the signal realization s. Consider the inner problem of choosing the quality sched-

ule. Since the choice of q̃ has no impact on the communication costs, the function above

is maximized when the quality at every signal realization maximizes the posterior expected

profit. Let gains from trade be defined as gt(θ, q) = θq − c(q) when the buyer’s marginal

utility from quality is θ and the seller produces q. Similarly, let qo(θ) = Argmax
q≥0

θq − c(q)

and GT (θ) = max
q≥0

θq − c(q) be the optimal quality level and the highest achievable gains

from trade given buyer’s type is θ. Then, the auxiliary problem is equivalent to

sup

¯
ω

sup
σ

∫
S

GT (Eω∼µs [ψ(ω)]) d
∑
ω′≥

¯
ω

σ(ds|α(ω′))µ0(ω
′)− Pr(ω ≥

¯
ω)H̃(

¯
ω, σ)
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Following Kamenica and Gentzkow (2011), for the problem above, it is without loss for

the seller to choose a Bayes-plausible distribution of posterior beliefs. For every lowest

participating buyer type
¯
ω and τ ∈ ∆2

¯
ω ≡ ∆(∆ ({

¯
ω, . . . , N})), define the information costs

H
¯
ω as the cheapest way to induce τ with some σ:

H
¯
ω(τ) ≡ inf

σ:τσ=τ
H̃((

¯
ω, σ)),

where τσ(A) ≡
∫
µ(s)∈A

d
∑
ω′≥

¯
ω

σ(ds|ω′)
µ0(ω)∑

ω′′≥
¯
ω µ0(ω′′)

The auxiliary problem gets reduced to the following information-acquisition problem:

sup
ω≥

¯
ω
sup
τ∈∆2

¯
ω

Pr(ω ≥
¯
ω)

[∫
∆

¯
ω

GT (Eω∼µ[ψ(ω)]) dτ(dµ)−H
¯
ω(τ)

]

subject to

∫
∆

¯
ω

µdτ(dµ) = µ0(ω)/Pr(ω
′ ≥

¯
ω) (BC)

To handle the problem above, I now derive a posterior-based problem. By Proposition 9 in

Denti, Marinacci, and Rustichini (2019), the likelihood separability of communication costs

implies posterior-separability of information costs H
¯
ω.

Definition 6. (Posterior Separability) Say thatH
¯
ω : ∆2

¯
ω → R+∪{+∞} is posterior-separable

at Ωp, if there exists a sublinear lower semicontinuous function h
¯
ω : ∆

¯
ω → R+ such that

H
¯
ω(τ) =

∫
∆

¯
ω

h
¯
ω(µ)dτ − h (µ0(·|ω′ ≥

¯
ω))

Example 1. If communication costs are as in Example 1, induced communication costs

are exactly entropy-reduction costs often used in the literature.

he
¯
ω(µ) =

∑
ω≥

¯
ω

µ(ω) log (µ(ω))

Given the information costs are posterior-separable, the auxiliary Problem 1 is equivalent

to the following Revenue-Maximizing Direct Information Acquisition (RM-DIA Problem) :

sup

¯
ω

sup
τ∈∆2

¯
ω

Pr(ω ≥
¯
ω)

[∫
∆

¯
ω

GT (Eω∼µ[ψ(ω)])− h
¯
ω(µ)dτ(dµ)

]
subject to BC
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Let U∗
S denote the value to the RM-DIA Problem. As discussed above, U∗

S provides an

upper bound on the seller’s achievable payoff.

Lemma 2. The value of the seller’s problem Ũ∗
S is at most U∗

S, the value of RM-DIA Problem.

I now explore the conditions under which the seller can attain this boundary payoff. Anal-

ogous to the standard model by Mussa and Rosen (1978), specific monotonicity conditions

must be met to make this boundary achievable. It is no longer sufficient that the buyer’s

marginal utility is ordered the same way as the virtual type. In addition, we must require

that the posterior beliefs within the support of the optimal information strategy satisfy the

monotone likelihood ratio property.

Definition 7. Say τ ∈ ∆2

¯
ω satisfies monotone likelihood ratio property (MLRP), that is

supp(τ) = {µi}i∈I with
µk(ω)

µk(ω′)
≥ µl(ω)

µl(ω′)
,∀k > l, ω > ω′

Together, the two notions of monotonicity characterize a regular RM-DIA Problem. With

many buyer types, the required monotonicity of the posterior beliefs in support of an optimal

information policy can only be ensured by the entropy-reduction costs as in Example 1

(Mensch (2021)). The solution approach I use in this paper cannot handle the case of a more

general information costs framework with many buyers and requires further investigation

beyond this paper.

Definition 8. Say that the problem RM-DIA Problem is regular if the virtual type is regular:

Pr(ω′ > ω) [(θ(ω + 1)− θ(ω)] /µ0(ω) is decreasing and one of the following holds:

1. either there are only two buyer types

2. or the communication costs are proportional to entropy reduction, that is h = κh̃e for

some κ ∈ R+

For the settings where RM-DIA Problem is regular, it is possible to construct a feasible

mechanism that (almost) achieves the value U∗
S.

Theorem 1. Suppose the RM-DIA Problem is regular. Then, the value of the original

seller’s problem is the same as the RM-DIA Problem: U∗
S = Ũ∗

S. Moreover, there exists a

solution (
¯
ω∗, τ ∗) which solves RM-DIA Problem, with affinely independent support supp(τ ∗)

that characterizes an optimal listening strategy of the seller. In particular,

(i) For a binary buyer case, there exists an optimal mechanism with a listening strategy

στ∗ that achieves U∗
S.
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(ii) If N ≥ 3, there exists a sequence of feasible mechanisms with listening strategies {σn}∞n=1

converging to στ∗ and with a seller’s payoff converging to U∗
S.

Proof. Suppose (
¯
ω∗, τ ∗) is a solution to RM-DIA Problem. Up to relabeling, S contains

{sµ}µ∈τ∗ . Let στ∗ ∈ (∆(S))Ωp be defined so that the seller hears essentially his posterior

belief about the buyer’s report:

στ∗(ω)(sµ) = τ ∗(µ)
µ(ω)

µ0(ω)/Pr(ω ≥
¯
ω∗)

,∀µ ∈ τ ∗

By likelihood separability, the cost of such a communication protocol is the same as the infor-

mational cost of τ ∗: H̃(
¯
ω∗, στ∗) = H

¯
ω(τ

∗). The selling rule must respectively be constructed

so that the seller offers the quality optimal at the realized posterior belief. That is, for ev-

ery sµ ∈ supp(τ): q̃∗(sµ) = qo
(∑

ω≥µ ψ(ω)µ(ω)
)
. Relying on the regularity assumption, I

show in Lemma 7 that the optimal information policy τ ∗ satisfies MLRP. Then, by Milgrom

(1981) and regularity of the virtual type, the conditional expected quality
∫
S
q̃∗(s)dστ∗(ds|ω)

is increasing in ω, which is necessary for IC. It remains to establish whether it is feasible to

collect the same expected transfers as suggested in the formulation of RM-DIA Problem.

For a binary buyer type, it is rather easy to construct the price schedule that would

induce the desired transfers. Note that either τ ∗ is uninformative or contains at least two

distinct posteriors. In the former case, the seller serves a single quality and can achieve the

desired profit by extracting the total surplus from the lowest buyer type. In the latter case,

the listening strategy of the seller {στ∗(ω)}ω∈{1,2} spans R2, and she can induce any vector

of conditional transfers by each buyer type. In particular, she can use the standard envelope

formula for (conditional on type) expected transfers, resulting in the same expected profit as

suggested by RM-DIA Problem (see Lemma 5 for details).

For many buyer types, the seller may not reach the boundary exactly but can get in-

finitely close to it. The respective mechanism is built similarly to the binary case but may

require additional low-probability signal realizations to span the desired transfers for every

participating buyer type. I describe the construction formally in Appendix A.

Given the construction of the mechanism, we can now limit how many signals the seller

uses to communicate with the buyer.

Corollary 1. There exists an (almost) optimal mechanism with a listening strategy σ that

has at most 2 · N different signals in its support and offers at most N + 1 different quality

levels.

Proof. It immediately follows that the seller needs at most 2·N signals in an (almost) optimal

solution. Indeed, by Lemma 6 in Appendix A, there exists (
¯
ω∗, τ ∗), such that τ ∗ has affinely
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independent support. Consequently, supp(τ ∗) contains at most N different posteriors. By

construction, the support of the listening strategy στ∗ contains at most N different signals.

For the case of many buyer types, the seller needs at most N additional signal realizations

to span RN and implement the desired transfers from every buyer type.

Given Theorem 1, we can now apply the concavification method from Kamenica and

Gentzkow (2011). For example, suppose that the buyer has two types and the seller serves

both. An optimal information acquisition policy is then fully summarized by two posterior

beliefs (that the buyer’s type is 2): {µl, µh}. To obtain these, one needs to find the two

points where GT (Eω∼µ[ψ(ω)])−h
¯
ω(µ) coincides with its concavification and that are closest

to the prior belief µ0. At the points in the support of the optimal information policy, the

concavification of the value function coincides with the actual value function, which is affine

between (µl, µh) and (weakly) exceeds the value function everywhere.

Figure 1: Optimal Information Acquisition

µl µ0 µh

GT (Eω∼µ[ψ(ω)])− h
¯
ω(µ)

µ

Note: the figure illustrates the construction of an optimal information strategy by a seller for a binary

buyer type. {µl, µh} denote the posterior beliefs in the optimal information acquisition policy. The dashed

line corresponds to a concavification of GT (Eω∼µ[ψ(ω)])− h
¯
ω(µ).

Example (Quadratic-Entropy). I now characterize an optimal information policy for a

specific case. Suppose that N = 2, both types are equally likely. Take the costs of production

to be quadratic c(q) = 1
2
q2. Assume the costs of information are given by entropy reduction.

Equipped with Theorem 1, we can describe the seller’s optimal communication strategy with

the optimal information acquisition about a buyer’s virtual type.

Suppose the seller decides to serve both types of the buyer. With entropy reduction costs,

both of the optimal posteriors must be interior, meaning the concavification must touch the
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value function at {µl, µh}. Under the parametric assumptions, the gains from trade are given

by GT (x) = 0.5x2, and the virtual types are: ψ(2) = θ(2), ψ(1) = 2θ(1) − θ(2). The first

equation below makes sure that the slope of the value function is the same at both posteriors.

The second equation ensures the value function coincides with the concavification that grows

linearly between the two:

4(θ(2)− θ(1))2(µl − µh) = log

(
µl

1− µl

1− µh

µh

)
2(θ(2)− θ(1))2(µl − µh) = log

(
µl

1− µl

)
+

1

µl − µh

(
µh log(µh) + (1− µh) log(1− µh)

− µl log(µl) + (1− µl) log(1− µl)

)
A special candidate for the solution is a symmetric choice of the supported posterior beliefs,

with {µl, 1− µl} and µl ≤ 0.5 solving:

2(θ(2)− θ(1))2(2µl − 1) = log

(
µl

1− µl

)
4(θ(2)− θ(1))2 − 1

µl(1− µl)
< 0

In Appendix A, I verify that this is indeed a solution.

4 Welfare Implications

In this section, I explore the implications of costly communication for the welfare. First, I

compare the optimal communication by a profit-maximizing seller to a designer who instead

maximizes social surplus (for the same participating buyer types). Endogenous choice of

information introduces another source of distortion. In particular, with a binary buyer type,

the seller acquires too much information compared to a socially optimal level. As a result,

the seller can screen different buyer types better, reducing the quality level of the lower type

(on top of the classic distortion due to screening).

In addition, I also consider how communication costs affect the realized gains from trade

(in a seller’s optimal mechanism). I find that the gains from trade may increase or decrease

with communication costs, depending on the curvature of the marginal costs.
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4.1 Socially Optimal Information Acquisition

Given that communication costs are potentially different between different sets of participat-

ing buyer types, I consider a constrained social optimum problem. I fix the set of participating

buyers and analyze a socially optimal information policy that maximizes the expected gains

from trade net of communication costs:

Social Optimum :

sup
τ∈∆2

¯
ω

Pr(ω ≥
¯
ω)

∫
∆

¯
ω

GT (Eω∼µ[θ(ω)])− h
¯
ω(µ)dτ(dµ)

Proposition 1. Suppose (
¯
ω∗, τRM) solves RM-DIA Problem, and τSO

¯
ω∗ is a socially optimal

information strategy given
¯
ω∗. If the marginal costs of production are convex, then

(i) If N = 2, the seller acquires more information than is socially optimal τRM ⪰B τSO
¯
ω∗

(ii) If N ≥ 3, the seller does not acquire less information than is socially optimal τSO
¯
ω∗ ⊁B

τRM

Proof. Following insights from existing literature, to compare the two solutions, we need to

analyze whether the seller’s problem is “more convex”. In Appendix B, I formulate a slightly

strengthened version of Proposition 4 by Yoder (2022) to make the comparison between

the suggested (constrained) social optimum and the seller’s choice of information policy. In

particular, it is sufficient to establish that the social optimum problem is additively more

concave on the support of its optimal information policy.

Definition 9. For any two functions f, g : D → R, with a convex domain D, say that f

is additively more concave on D0 ⊆ D, if f = g + h for some h, such that for any convex

combination of finitely many elements of D0, {di}Ki=1:

K∑
i=1

λih(di) ≤ h

(
K∑
i=1

λidi

)

where
∑K

i=1 λi = 1 and λi > 0.

It remains to verify that the social surplus is additively more concave on the support of

its optimal information strategy than the seller’s payoff. Given the lowest served buyer-type

¯
ω, let:

vRM

¯
ω (µ) ≡ Pr(ω ≥

¯
ω)GT (Eω∼µ[ψ(ω)])− h

¯
ω(µ)
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vSO
¯
ω (µ) ≡ Pr(ω ≥

¯
ω)GT (Eω∼µ[θ(ω)])− h

¯
ω(µ)

The two payoffs are only different in the buyer’s effective expected marginal utility, with the

seller using a buyer’s virtual type instead of the actual marginal utility. Defining

ψ(ω, t) ≡

θ(ω)− t
Pr(ω′ > ω)

µ0(ω)
[(θ(ω + 1)− θ(ω)] , if ω < N

θ(ω), if ω = N.

we can express the difference between the two payoffs as follows (by Envelope Theorem

(Milgrom and Segal (2002)):

vSO
¯
ω (µ)− vRM

¯
ω (µ)

Pr(ω ≥
¯
ω)

=

∫ 1

0

g(t, µ)dt

where g
¯
ω(t, µ) ≡

∑
N>ω≥

¯
ω

−∂ψ(ω, t)
∂t

µ(ω)qo (Eω∼µ[ψ(ω, t)])

Let τSO
¯
ω be a socially optimal information strategy given

¯
ω is the lowest participating buyer’s

type. Similarly to RM-DIA Problem, τSO
¯
ω must satisfy MLRP by Lemma 7. The next lemma

suffices to establish the social surplus is additively more concave than the seller’s payoff.

Lemma 3. Suppose c′′′(·) > 0, and ψ(
¯
ω, 1) ≥ 0. Consider any family of posteriors {µi}Ki=1

that are ordered by MLRP. Then, for any weights {λi}Ki=1 with λi > 1,
∑K

i=1 λi = 1:

K∑
i=1

λig
¯
ω(t, µi) ≤ g

¯
ω

(
t,

K∑
i=1

λiµi

)

Proof. See Appendix B.

Note that under an optimal mechanism, the seller never serves any buyer with a negative

virtual type. Indeed, they do not contribute to the expected profit and can only increase

communication costs due to the monotonicity in participants. Then, Proposition 4 by Yoder

(2022) and Lemma 3 immediately imply Proposition 1.

With a binary buyer’s type, we can conclude the seller has more extreme beliefs in the

support of her optimal solution, which is equivalent to the seller acquiring more information

in the Blackwell sense. With more buyer types, I can only rule out the possibility of a social

planner acquiring more information (but it is possible that the two information policies are

incomparable).
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Figure 2: Information Acquisition: Comparison to a Social Optimum

µl µh

µSO
l µSO

h

Seller’s Value

Social Value

µ

Note: the figure illustrates the comparison of the information choice by a seller and a benevolent social

planner for a binary buyer type. The dashed lines represent a corresponding concavification of a social or

a social value. {µl, µh} stand for a seller’s optimal choice of information, while {µSO
l , µSO

h } —- constrained

social optimum, where the set of participating buyer types is taken as given.

Why is the seller more willing to pay for precise information? There are two forces in place.

First, facing the same buyer types, the seller perceives two types as more dispersed than a

social planner does since the low type bears information rent distortion. In addition, the

convexity of the marginal costs ensures that the lower the posterior expected state (expected

marginal value or expected virtual surplus), the faster the optimal quality qo drops. That

is, this condition ensures that getting the state right when it is low is more important. The

seller always faces a lower state, all other things equal (again, due to the information rents),

and hence wants to have better information to get her optimal quality right.

With binary buyer type, Proposition 1 also implies that the seller, on average, underpro-

vides service quality.

Corollary 2. If the buyer’s type is binary (N = 2), the average informational distortion is

positive. In particular, the low type is hurt by both types of distortion.

Indeed, consider a seller-optimal mechanism induced by a solution (
¯
ω∗, τRM) to RM-DIA

Problem. The seller, on average, serves quality
∫
qo (Eω∼µ[ψ(ω)]) τ

SO(dµ). In comparison, at

the social optimum τSO
¯
ω∗ the average quality is

∫
qo (Eω∼µ[θ(ω)]) τ

RM(dµ). The total distortion

can be decomposed into two parts: (i) the usual screening distortion and (ii) informational
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distortion.∫
qo (Eω∼µ[θ(ω)])− qo (Eω∼µ[ψ(ω)]) dτ

SO

¯
ω∗ (dµ)︸ ︷︷ ︸

Screening Distortion

+

∫
qo (Eω∼µ[ψ(ω)]) d(τ

SO

¯
ω∗ − τRM)(dµ)︸ ︷︷ ︸

Informational Distortion

Screening distortion is always positive since the virtual type is lower than the true marginal

utility for every buyer type. In addition, if marginal costs are increasing, then qo(·) is concave.
By Proposition 1, the seller uses a more informative information strategy. Consequently,

informational distortion is also positive.

Example (Quadratic-Entropy). By the same argument, as in the seller’s problem the

constrained social optimum is given by the two symmetric posterior beliefs {µSO
l , 1 − µSO

l },
where µSO

l solves:

(θ(2)− θ(1))2(2µSO
l − 1) = log

(
µSO
l

1− µSO
l

)
with 2(θ(2)− θ(1))2 − 1

µSO
l (1− µSO

l )
< 0

It is easy to check how Proposition 1 applies to this example. Let µα be implicitly defined

as follows:

α(θ(2)− θ(1))2(2µα
l − 1) = log

(
µα
l

1− µα
l

)
,

with 2α(θ(2)− θ(1))2 − 1

µα
l (1− µα

l )
< 0 and µα

l ≤ 0.5

for α ∈ [1, 2]. Note that at α = 2 the solution to the above corresponds to a seller’s optimal

choice of the posterior belief, while at α = 1 — to a social optimum.

∂µα
l

∂α
= (θ(2)− θ(1))2(2µα

l − 1)/

(
1

µα
l (1− µα

l )
− 2α(θ(2)− θ(1))2

)
≤ 0

Hence, the seller chooses a lower µl compared to a social planner and holds more precise

posterior beliefs, as suggested by Proposition 1.

4.2 Increase in Information Costs

In this section, I explore how an increase in communication costs affects the anticipated gains

from trade within the seller’s optimal mechanism. For tractability, I restrict my analysis to

a binary buyer type.
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Suppose that communication costs increase by a factor of κ > 1 from H̃ to κH̃. In the

seller’s optimal mechanism from Theorem 1, the seller serves quality qo(Eµ[ψ(ω)]) when her

poster belief about the buyer’s type is µ. Consequently, the expected consumer surplus is

Eµ[θ(ω)]q
o(Eµ[ψ(ω)]), and the realized gains from trade at a posterior µ are

RGT (µ) = Eµ[θ(ω)]q
o(Eµ[ψ(ω)])− c (qo(Eµ[ψ(ω)]))

Given the seller’s optimal information policy τκ
¯
ω , the expected realized gains from trade

are

ERGT (κ,
¯
ω) = Pr(ω ≥

¯
ω)

∫
Eµ[θ(ω)]q

o(Eµ[ψ(ω)])− c (qo(Eµ[ψ(ω)])) dτ
κ

¯
ω (dµ)

I now analyze comparative statics of ERGT (κ,
¯
ω) with respect to κ. First, note that as

information gets more expensive, the seller communicates less.4 Since τκ is decreasing in κ

(in terms of Blackwell order), the realized gains from trade increase (decrease) in κ when

RGT (µ) is concave (convex). In general, the curvature of RGT (·) is ambiguous as two effects

are present:

RGT (µ) = GT (Eµ[ψ(ω)])︸ ︷︷ ︸
Value of Information

+ (Eµ[θ(ω)− ψ(ω)])qo(Eµ[ψ(ω)])︸ ︷︷ ︸
Discrepancy b/w the Social and the Seller’s Values

Note that the first summand is always convex. This component captures the benefit of im-

proved information in the market, as each type receives the intended quality more frequently.

Meanwhile, the second summand captures the discrepancy between the social value of quality

and the seller’s value, which can be either concave or convex. In particular, one can show

that it must be concave whenever qo is concave. Generally, it’s challenging to ascertain which

of the two effects would prevail. In the proposition that follows, I outline the sufficient condi-

tions under which the anticipated gains from trade either rise or fall as the seller encounters

greater costs in communicating with the buyer.

Proposition 2. Suppose that the buyer has a binary type. Then, if the set of participat-

ing buyer types
¯
ω remains fixed, the expected realized gains from trade (ERGT ) increase

(decrease) in κ if µ0 ≥ (≤)0.5 and the marginal costs of production are convex (concave).

Proof. See Appendix B.

The rationale behind these conditions is as follows. First, it’s crucial to observe that any

4Formally, this follows from Proposition 4 by Yoder (2022) — an affine change to the communication costs
makes the problem additively more concave.
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discrepancy between the realized gains and the seller’s profit arises from the lower type: just

as in the standard model, there is no distortion at the top in terms of the virtual value.

The extent of the distortion between the lower type’s true and virtual values is, in turn,

influenced by the frequency of the high type. Notably, in the extreme scenario where the

high type vanishes (µ0 → 0), the seller imposes (almost) no distortion on the lower type,

making better information consistently advantageous from a social standpoint.

The curvature of the marginal costs dictates how effectively inferior information can

counteract the distortion on the side of the lower type. For instance, with convex marginal

costs, the seller would significantly elevate her lower quality while making only moderate

adjustments to her higher quality. Given the substantial distortion at higher µ0 levels, it

becomes socially beneficial to sacrifice some of this higher quality to mitigate the distortion

at the bottom.

The relationship is exactly reversed when the marginal costs are instead concave: the

adjustments would be more severe at the top, where society seeks no adjustment. Given

the low level of distortion at a low prior belief µ0, attempting to counteract it with inferior

information proves inefficient.

The result can be vaguely paralleled to that of Amrstong, Cowan, and Vickers (1995),

who partially characterize when uniform pricing is preferred to non-linear pricing with the

same average. In particular, the authors claim that price discrimination is socially wasteful

when the uniform price is sufficiently close to the marginal costs evaluated at the first-best

quantity. In my setting, the seller would choose such a price when µ0 is close to zero, ensuring

that information rent distortions don’t burden low-type consumers. Consequently, imposing

higher communication costs to limit price discrimination becomes socially favorable.

5 Ex-Post Participation Constraints

So far, I have only considered binding offers by the seller: the buyer cannot reject an offer

of a quality-price pair even if they are misheard. One might be interested in how this

assumption affects the results. Would the seller be worse off if the buyer could go away after

understanding that the seller got the message wrong and would supply the wrong offer? In

this section, I show that it is the opposite (at least when considering a binary buyer-type

case).

Suppose that in addition to choosing their reporting strategy, the buyers now decide

whether to participate after observing the seller’s signal. Let ρ : Ωp × S → {0, 1} denote the
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buyer’s participating strategy. Seller’s payoff now changes to:

ŨS((M,σ,Ωp, α), (q̃, p̃), p0, ρ) =
∑
ω∈Ωp

µ0(ω)

[
p0 + ρ(ω, s)

(∫
S

p̃(s)− c (q̃(s)) dσ(ds|α(ω))
)

−H̃(M,σ,Ωp, α)

]
The set of feasible mechanisms must also be changed accordingly.

Definition 10 (Feasible Mechanism with Ex-Post IR). Say that a mechanism ⟨(M,σ,Ωp,

α), (q̃, p̃), p0, ρ⟩ is feasible if

∀ω ∈ Ωp : max
m∈M

{∫
S

ρ(ω, s)uB(ω, q̃(s), p̃(s))dσ(ds|m)

}
≥ p0 (P1’)

∀ω /∈ Ωp : max
m∈M

{∫
S

ρ(ω, s)uB(ω, q̃(s), p̃(s))dσ(ds|m)

}
≤ p0

α ∈ Argmax
α∈AM,Ωp

∑
ω∈Ωp

∫
S

ρ(ω, s)uB(ω, q̃(s), p̃(s))dσ(ds|α(ω))

 (IC’)

uB(ω, q̃(s), p̃(s)) > (<)0 ⇒ ρ(ω, s) = 1(0) (Ex-Post IR)

Seemingly, the seller must be worse off with these additional constraints. However, this is

not necessarily true. In the proposition below, I show that when the buyer’s type is binary,

the seller is never worse off with the buyer’s participation constraints and can sometimes

achieve a better payoff by actively using the buyer’s decision to leave as an additional source

of information.

Proposition 3. Suppose that there are two buyer types. Then, the seller is no worse with

ex-post participation constraints. In addition, the seller might be strictly better off.

Proof. First, note that if the seller only serves the high type or uses only one signal realization,

then the seller engages in no communication and charges a single price. Ex-post IR constraints

are the same as participation constraints, and the result follows.

Suppose instead that the seller serves both buyer types and engages in active commu-

nication. Recall that with a binary buyer type with no ex-post participation constraints,

Theorem 1 implies an optimal communication strategy exists, where the seller only uses two

signal realizations and serves two quality levels. Suppose that ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ is

such a mechanism, and let me denote these two signals as {h, l}.
Assuming that the seller uses the same communication protocol and quality schedule

as before, I will now construct new prices that would induce each buyer to stay even after
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observing the seller’s signal while keeping the expected transfer by each buyer type the same.

Let p̂ and p̂0 be defined as follows:

p̂(h) = θ(1)q̃(h) p̂(l) = θ(1)q̃(h)− θ(2)(q̃(h)− q̃(l))

p̂0 = σ(l|1)×(θ(2)− θ(1))× (q̃(h)− q̃(l))

First, note that all ex-post participation constraints are satisfied. Indeed, after the seller

gets the low signal, the low type gets:

θ(1)q̃(l)− p̂(l) = θ(2)(q̃(h)− q̃(l))− θ(1)(q̃(h)− q̃(l)) ≥ 0

After the seller gets a high signal, the low type gets exactly 0. Since the low type is willing

to stay, so is the higher type. It remains to check that the seller loses no revenue with such

prices and that all the remaining constraints are satisfied. Expected payment by a low type

is

p̂0 + σ(l|1)p̂(l) + σ(h|1)p̂(h) = θ(1) (σ(h|1)q̃(h) + σ(l|1)q̃(l))

which is the maximal revenue the seller can collect with ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ due to

participation constraint. For the high type, the expected payment is

p̂0 + σ(h|2)p̂(l) + σ(l|2)p̂(h) = σ(h|2)θ(2)q̃(h) + σ(l|2)θ(2)q̃(l)

− (θ(2)− θ(1)) (σ(h|1)q̃(h) + σ(l|1)q̃(l))

which is the maximal revenue the seller can collect with ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ due to IC

constraint. This concludes the proof for the first part of Proposition 3.

To establish the second part, I need to provide an example of how the seller could achieve

an improvement. Consider the following deviation: assume the seller collects the same infor-

mation through direct communication but adjusts her selling rule to use ex-post participation

constraints. The construction is as follows. The price for the high-quality item is set high

enough to make the lower type leave while providing just enough incentives for the high

type to report his type truthfully. As the seller becomes convinced that only the high type

purchases a more expensive product, the ”no distortion at the top” gets restored for the

high-quality item. The low-quality item is priced to exert the full surplus of the low type.

Given this pricing strategy, one can back out the new optimal quality level under the low

signal realization. Specifically, I consider the following selling rule:
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qe(h) = qo(θ(2))

qe(l) = qo

(
θ(1)− µh

τ(µh)

τ(µl)
(θ(2)− θ(1))

)
pe(h) = θ(2)qe(h)− (θ(2)− θ(1))qe(l)

pe(l) = θ(1)qe(l)

with zero up-front payment. Note that the low quality now bears all the weight of distortion

from the information rents, which dampens the effective expected virtual type at µl. That is,

the deviation produces the following two effects. Firstly, at µh, the seller gets an additional

signal that splits her beliefs between 0 and 1. At µ = 1, the seller chooses an optimal quality

given she is convinced that she faces a high type. At µ = 0, the seller is belowGT (Eω∼µ[ψ(ω)])

as she would want to reconsider her offer given the buyer’s decision to walk away, but she is

not given such an opportunity in my model. Secondly, at µl, no additional signal is gathered,

but the posterior expected profit shifts downwards for the same belief, as the effective virtual

type is now lower at µl. I summarize these two effects in the picture below. Depending on the

parameter values, such a deviation may be profitable. In Appendix C, I provide a numerical

example where this is indeed the case.

Figure 3: Suggested Deviation with Ex-Post Participation Constraints

µl µhµ0

GT (Eω∼µ[ψ(ω)])

µ

(a) First Effect

Note: as a first effect, the seller gains addi-

tional information about the buyer when the low

type leaves in response to an expensive offer. As

the seller is not allowed to follow up, she does not

offer an optimal quality at µ = 0.

µl µhµ0

GT (Eω∼µ[ψ(ω)])

µ

(b) Second Effect

Note: as a second effect, the weight of distor-

tion due to information rents is shifted entirely to

the low quality as if the seller faces a lower ex-

pected virtual type. The seller’s posterior profit

gets lower at µl for the same posterior belief.
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Figure 3: Suggested Deviation with Ex-Post Participation Constraints

µl µhµ0

GT (Eω∼µ[ψ(ω)])

µ

Expected Profit (deviation)

Expected Profit (initial)

(c) Total Effect

Note: the total effect averages out the two effects described

above. Depending on the parameters, the deviation may or may

not be profitable. The figure displays the case when the deviation

generates additional expected profit for the same level of informa-

tion collected through direct communication.

Proposition 3 sheds light on the potential benefits of ex-post constraints for the seller

when communication is costly. The buyer’s option to depart after the offer is presented can

serve as an additional means of information exchange, potentially advantageous for the seller.

It remains unclear, however, how an optimal mechanism would look in the presence of ex-post

participation constraints. Analyzing what is the optimal way of leveraging the informational

content of participation constraints remains an open question for future research.

6 Horizontal Types

In this section, I consider the seller’s problem when she communicates with a buyer whose

type is horizontally differentiated. I show that under a uniform prior, Theorem 1 still applies,

and the seller’s problem reduces to collecting information about the consumer’s virtual type.

In contrast to vertical differentiation, as the incentives of a seller and a buyer are aligned,

there is no excessive communication.

The model in Section 2 can be accommodated for the case where the buyer types are

instead purely horizontal. Specifically, suppose that there are finitely many Ω ∈ {1, . . . , N}
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and finitely many quality levels q ∈ Ω. Each buyer type only values the correct quality

uB(ω, q, p) = ū1{q = ω} − p for some ū ∈ R++. For simplicity, assume the seller bears no

production costs and only has to choose which quality to serve to each buyer she faces.

We can now guess the incentive compatibility constraints are slack. In this case, the

relevant auxiliary problem is where the seller collects the total expected surplus, given her

choice of information and quality schedule. The seller acts efficiently for every signal she

gathers and chooses the quality to maximize the probability of a match with the buyer. The

seller’s RM-DIA Problem becomes:

sup
Ωp

sup
τ∈∆2(Ωp)

Pr(ω ∈ Ωp)

[∫
∆(Ωp)

max
ω′∈Ωp

{µ(ω′)} − hΩp(µ)dτ(dµ)

]
subject to BC

Proposition 4. Suppose that the buyer types are purely horizontal and the prior distribution

is uniform µ0(ω) =
1
N
. If communication costs satisfy likelihood separability and monotonicity

in participants, the seller’s problem is equivalent to RM-DIA Problem. The seller’s optimal

choice of information is socially optimal.

Proof. See Appendix D

The proof approach mirrors that of vertically differentiated buyers. Once we can find

an appropriate auxiliary problem — in this case, maximizing expected social surplus — it

only remains to pinpoint the correct regularity condition that would make such an outcome

implementable. Under an optimal information policy, each participating buyer type has his

most preferred signal realization, under which he gets the correct quality. The adjusted

monotonicity condition then requires that if the buyer reports truthfully, his preferred signal

is the most probable one. A uniform prior distribution is sufficient for this condition to be

satisfied.

Certainly, it would be desirable to delve deeper into optimal communication strategies

when buyers possess both vertical and horizontal characteristics. Such a characterization

is challenging as there might be non-trivial interactions between the two both on the side

of incentives provision and communication costs. Multidimensional screening often remains

intractable except for certain specific instances (see Rochet and Stole (2003)). Similarly, the

models of rational inattention about multidimensional state prove to be complex apart for

some special parametric assumptions (e.g. quadratic loss with normally distributed states as

in Kőszegi and Matĕjka (2020) and Dewan (2020)). Further research is necessary to identify

special scenarios where analytical insights about optimal communication can be derived when

the buyer’s type is multi-dimensional.
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7 Conclusion

This paper revisits the classical monopolistic screening model, integrating it with the rational

inattention framework to delve into the effects of costly communication in service markets.

First, I show that if the communication costs are proportional to entropy reduction, the

seller’s problem of choosing the optimal communication protocol can be reduced to costly

information acquisition about the buyer’s virtual type.

The analysis suggests that the seller communicates too much compared to the social

optimum, which leads to consequent underprovision of service quality. Furthermore, I show

that increased communication costs can increase or decrease the expected gains from trade

in a monopolistic market, depending on the relative frequency of the buyer types and the

seller’s production costs.

In conclusion, this paper contributes to the literature by offering a model that captures the

effects of seller-buyer communication and its impact on market efficiency. Further research

could explore optimal communication under more general settings with richer buyer types

and the exact effects of ex-post participation constraints on the seller’s communication choice.
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Kőszegi, Botond and Filip Matĕjka (Jan. 2020). “Choice Simplification: A Theory of Mental

Budgeting and Naive Diversification*”. In: The Quarterly Journal of Economics 135.2,

pp. 1153–1207.

Li, A. and M. Yang (2020). “Optimal Incentive Contract with Endogenous Monitoring Tech-

nology”. In: Theoretical Economics 15.3, pp. 1135–1173.

Lipnowski, Elliot, Doron Ravid, and Denis Shishkin (2022). “Perfect Bayesian Persuasion”.

Working paper.

Mackowiak, Bartosz and Mirko Wiederholt (June 2009). “Optimal Sticky Prices under Ra-

tional Inattention”. In: American Economic Review 99.3, pp. 769–803.
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Appendices

A Proofs for Section 3

Lemma 4. Suppose a threshold mechanism ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ is feasible, with
¯
ω —

the lowest participating type, then

1. p0 +
∫
S
p̃(s)dσ(α(ω)) ≤ t((M,σ,Ωp,α),q̃)(ω),∀ω ∈ Ωp,

where t((M,σ,Ωp,α),q̃) : Ωp → R is defined as follows:

t((M,σ,Ωp,α),q̃)(ω) =
∑

¯
ω+1≤ω′≤ω

[
θ(ω′)

∫
S

q̃(s)dσ(ds|α(ω′))− σ(ds|α(ω′ − 1))

]
+θ(

¯
ω)

∫
S

q̃(s)dσ(ds|α(
¯
ω))

2.
∑

ω∈Ωp
t((M,σ,Ωp,α),q̃)(ω)µ0(ω) =

∑
ω∈Ωp

µ0(ω)
∫
S
ψ(ω)q̃(s)dσ(ds|α(ω))

Proof. 1) Since
¯
ω ∈ Ωp, p0+

∫
S
p̃(s)dσ(α(

¯
ω)) ≤ θ(

¯
ω)
∫
S
q̃(s)dσ(α(

¯
ω)) by (P1). Moreover, by

(IC), [
p0 +

∫
S

p̃(s)dσ(ds|α(ω))
]
−
[
p0 +

∫
S

p̃(s)dσ(ds|α(ω − 1))

]
≤ θ(ω)

∫
S

q̃(s)dσ(ds|α(ω))− σ(ds|α(ω − 1)),∀ω ∈ Ωp

so that if (1) is satisfied for ω − 1, (1) is also satisfied for ω. Then, (1) is satisfied for all

ω ∈ Ωp by an argument of induction.

2) Plugging in the definition of t((M,σ,Ωp,α),q̃), the total expected transfer from any feasible
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mechanism is bounded by the surplus from an average virtual type:∑
ω∈Ωp

t((M,σ,Ωp,α),q̃)(ω)µ0(ω) =

∑
ω∈Ωp

[∑
ω′≥ω

µ0(ω
′)θ(ω)

∫
S

q̃(s)dσ(ds|α(ω))−
∑
ω′>ω

µ0(ω
′)θ(ω + 1)

∫
S

q̃(s)dσ(ds|α(ω))

]

=
∑
ω∈Ωp

µ0(ω)

[
θ(ω)− Pr(ω′ > ω)

µ0(ω)
(θ(ω)− θ(ω + 1))

] ∫
S

q̃(s)dσ(ds|α(ω))

=
∑
ω∈Ωp

µ0(ω)ψ(ω)

∫
S

q̃(s)dσ(ds|α(ω))

Consider any communication protocol (M,σ,Ωp, α). Define σ ◦ α ∈ (∆(S))Ωp so that

dσ ◦ α(ω) = dσ(α(ω)) and let us use σ̄ to be a marginal distribution over signals induced

by σ ◦ α given a prior µ0. Let |σ ◦ α| to denote the number of unique elements in the set

{σ ◦ α(ω)}ω∈Ωp . Let Ω ̸=
p be a subset of participating types, such that they induce different

conditional distributions over signals. That is, Ω̸=
p ⊆ Ωp, such that |σ ◦ α| =

∣∣Ω̸=
p

∣∣ and
σ(α(ω)) ̸= σ(α(ω′)),∀ω, ω′ ∈ Ω ̸=

p . Denote a truthful reporting rule to be αtr, where αtr :

Ωp → Ωp is such that αtr(ω) = ω,∀ω ∈ Ωp.

Definition 11. Say that a communication protocol (M,σ,Ωp, α) is linearly independent , if

there exists a non-crossing family of signals subsets {S1, . . . , S|σ◦α(Ωp)|}, with σ̄(Sj) > 0, ∀j ∈
1, . . . , |σ ◦ α(Ωp)|, such that for any (λω)ω∈Ω̸=

p
∈ R|Ω̸

=
p |:

∑
ω∈Ω̸=

p

λω × σ ◦ α(Ωp) = 0,∀j ∈ {1, . . . , |σ ◦ α(Ωp)|} ⇔ λω = 0, ∀ω

Lemma 5. Consider a threshold mechanism ⟨(M,σ,Ωp, α), (q̃, p̃), p0⟩ with a linearly indepen-

dent communication protocol and conditional expected quality:
∫
S
q̃(s)dσ(ds|α(ω)) increas-

ing in ω. Then, there exist p̃′, p′0, such that ⟨(Ωp, σ ◦ α,Ωp, α
tr), (q̃, p̃′), p′0⟩ is feasible and

p′0 +
∫
S
p̃′(s)dσ(α(ω)) = t((M,σ,Ωp,α),q̃)(ω),∀ω ∈ Ωp.

Proof. Set p0 = 0. We now find p̃′ : S → R, such that the expected transfer paid by each

type achieves the upper boundary:∫
S

p̃′(s)dσ(ds|α(ω)) = t((M,σ,Ωp,α),q̃)(ω)

Obviously, if the initial communication protocol (M,σ,Ωp, α) is linearly independent , so is
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(Ωp, σ ◦ α,Ωp, α). Take a family of signals with the property as in the definition of linearly

independent communication protocol. Let us search for {p1, . . . , p|σ(α(Ωp))|} which solve:

|σ(α(Ωp))|∑
j=1

pj × σ(α(ω))(Sj) = t((M,σ,Ωp,α),q̃)(ω),∀ω ∈ Ω̸=
p

The solution to the above exists by linear independence of the matrix formed by σ(α(ω))(Sj).

Hence, we can define a p̃′ in the following way:

p̃′(s) =

pj, if s ∈ Sj

0, else

It remains to verify that ⟨(Ωp, σ◦,Ωp, α
tr), (q̃, p̃′), p′0⟩ is feasible. The proof is essentially

the same as standard Mussa Rosen with finitely many times, as we have just verified above

that the seller can charge type-contingent transfers from the buyer given that the selected

communication protocol is linearly independent. First, participation constraints (P1), (P2)

are clearly satisfied, given the mechanism is a threshold one and t((M,σ,Ωp,α),q̃) extracts the

whole surplus (only) from the lowest participating type. It remains to check that (IC) is

satisfied: ∫
S

θ(ω)q̃(s)− p̃′(s)dσ(ds|α(ω))− p′0

≥
∫
S

θ(ω)q̃(s)− p̃′(s)dσ(ds|m)− p′0,∀m ∈ α(Ωp) ⇔∫
S

θ(ω)q̃(s)− p̃′(s)dσ(ds|α(ω))− p′0

≥
∫
S

θ(ω)q̃(s)− p̃′(s)dσ(ds|α(ω′))− p′0,∀ω′ ∈ Ωp ⇔∫
S

θ(ω)q̃(s)dσ(ds|α(ω))− t((M,σ,Ωp,α),q̃)(ω)

≥
∫
S

θ(ω)q̃(s)dσ(ds|α(ω′))− t((M,σ,Ωp,α),q̃)(ω′),∀ω′ ∈ Ωp

Plugging in the definition of t((M,σ,Ωp,α),q̃)(ω), the above is true whenever:

t((M,σ,Ωp,α),q̃)(ω)− t((M,σ,Ωp,α),q̃)(ω′) (2)

=
∑

ω′+1≤ω′′≤ω

θ(ω′′)

∫
S

q̃(s)dσ(ds|α(ω′′))− σ(ds|α(ω′′−1))
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≤ θ(ω)

∫
S

q̃(s)dσ(ds|α(ω))− σ(ds|α(ω′)) (3)

By the premise of the lemma,
∫
S
q̃(s)dσ(α(ω)) is increasing in ω. By assumption of the

model, θ(ω) is also increasing in ω. Together, these ensure the Inequality Equation (3) is

true.

Lemma 6. For any (
¯
ω∗, τ) that solves RM-DIA Problem, there is another τ ′, such that

(
¯
ω∗, τ ′) also solves RM-DIA Problemand supp(τ ′) is affinely independent.

Proof. By Lemma 1 Lipnowski, Ravid, and Shishkin, 2022, there exists τ ′ with affine support,

such that (
¯
ω∗, τ ′) generates at least the same payoff as (

¯
ω∗, τ). But then the optimality of

(
¯
ω∗, τ ′) follows from optimality of (

¯
ω∗, τ ′).

Lemma 7. Suppose RM-DIA Problemis regular. Then, if (
¯
ω∗, τ ∗) is a solution to RM-DIA

Problem(Social Optimum Problem), then τ ∗ satisfies MLRP.

Proof. Note that for N = 2, MLRP is trivially satisfied. Alternatively, assume that infor-

mation cost is proportional to entropy reduction. Again, under the regularity assumption on

the virtual type, gt(ψ(ω, t), q) satisfies increasing differences in (ω, q) for every t ∈ [0, 1]:

gt(ψ(ω, t), q)− gt(ψ(ω, t), q′) ≥ gt(ψ(ω′, t), q)− gt(ψ(ω′, t), q′),∀ω > ω′ and q > q′

Then, τ ∗ satisfies MLRP by Theorem 1 in Mensch, 2021.

Proof of Theorem 1 for entropy reduction costs. Suppose that communication costs are pro-

portional to entropy reduction. Let (
¯
ω∗, τ ∗) be a solution to RM-DIA Problem, which has

the properties from Lemma 6. Consider a sequence of mechanisms

⟨(M tr, σ̃ε, Ω̃p, α
tr), (q̃, p̃ε), p̃0⟩

with

σ̃ε = (1− ε)στ∗ + εσι, q̃(s) =

qo
(∑

ω≥
¯
ω∗ ψ(ω)µ(ω)

)
, if s = sµ

0, else

where σι is built as follows:

1. Let Sι be any subset of S with cardinality of
∣∣∣Ω̃p

∣∣∣, such that Sι ∩ supp(σ̄τ∗) = ∅. Note
that such a set exists, since cardinality of S is continuum, and σ̄τ∗ has a cardinality of

at most
∣∣∣Ω̃p

∣∣∣.
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2. Define a one-to-one map sι : Ω̃p → Sι.

3. Let σι to be:

σι(ω)(s) =

1− δ ×
(∣∣∣Ω̃p

∣∣∣− 1
)
, if s = sι(ω)

δ, else

for some 0 < δ <
1∣∣∣Ω̃p

∣∣∣ . Note that :

∫
S

q̃(s)dσ̃ε(ω) = (1− ε)

∫
supp(στ∗ )

q̃(s)dστ∗(ds|ω) + ε

∫
Sι

q̃(s)dσ̃ι(ds|ω) =

(1− ε)

∫
supp(στ∗ )

q̃(s)dστ∗(ds|ω) (4)

For every ε ∈ (0, 1), let tε : Ω̃p → R to be:

tε(ω) ≡
∑

¯
ω∗+1≤ω′≤ω

[
θ(ω′)

∫
S

q̃(s)dσ̃ε(ds|ω′)− σ̃ε(ds|ω′ − 1)

]
+ θ(

¯
ω)

∫
S

q̃(s)dσ̃ε(ds|
¯
ω∗)

For every 1 > ε > 0, we now want to find p̃ε : S → R, such that
∫
S
p̃ε(s)dσ̃(ω) achieves this

boundary : ∫
S

p̃ε(s)dσ̃(ds|ω) = tε(ω)

Such a p̃ε is guaranteed to exist given that σι — by construction — consists of
∣∣∣Ω̃p

∣∣∣ linearly
independent vectors and supp(σι) ∩ supp(στ∗) = ∅.

By MLRP,
∫
supp(στ∗ )

q̃(s)dστ∗(ds|ω) in increasing in ω, hence so does
∫
S
q̃(s)dσ̃ε(ω) by

Equation (4). Again, this guarantees that every mechanism in the sequence is feasible.

Seller’s profit along the sequence is:

(1− ε)×
∫
GT

∑
ω≥

¯
ω

µ(ω)ψ(ω)

 dτ ∗ − ε× c(0)

Provided that 0 < δ <
1∣∣∣Ω̃p

∣∣∣ , entropy-reduction costs are finite as none of the signals induce
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degenerate beliefs: h̃e

((
dσ̃ε(ω)

dγ

)
ω∈Ωp

)
<∞,∀s ∈ supp(σ̃ε),∀ε ∈ (0, 1), so that:

∫
S

h̃e

((
dσ̃ε(ω)

dγ
(s)

)
ω∈Ωp

)
dγ(ds) −→

ε→0
h̃e

((
dστ∗(ω)

dγ
(s)

)
ω∈Ωp

)
dγ(ds)

But then Ũ∗
S ≥ sup

1>ε>0
ŨS

(
(M̃, σ̃ε, Ω̃p, α̃), (q̃, p̃

ε), p̃0

)
= U∗

S.

It is worth noting that the seller only needs to use these additional signals when (M,σ,

Ωp, α) fails to be linearly independent. By Lemma 6, this can only happen when the seller

uses too few signal realizations in her optimal information strategy. As costs approach zero,

the optimal information strategy must converge to the full information information, which

must satisfy linear independence. So, for sufficiently small costs, the seller should be able to

achieve her payoff boundary exactly.

Proof for the Solution of Example (Quadratic-Entropy). The suggested choice of {µl, 1−µl}
makes sure the two equality conditions are satisfied. It remains to verify that the value

function is below its concavification on the whole interval between (µl, 1− µl). To that end,

we need to make sure that the function:

2(θ(2)− θ(1))2(µ− µl)
2 + log

(
µl

1− µl

)
(µ− µl) (5)

+µl log(µl) + (1− µl) log(1− µl)− µ log(µ)− (1− µ) log(1− µ) (6)

is maximized at the corners on the interval [µl, 1− µl].

∂

∂µ
: 4(θ(2)− θ(1))2(µ− µl) + log

(
µl

1− µl

)
− log

(
µ

1− µ

)
To verify that the corners are the solutions of the Problem 5, it is sufficient to show that the

derivative is negative on [µl, 0.5] and is positive on [0.5, 1 − µl]. Since the derivative is zero

at {µl, 0.5, 1− µl}, it now remains to check that the derivate is convex between (µl, 0.5) and

is concave on (0.5, 1− µl).

∂3

∂µ3
:

1− 2µ

µ2(1− µ)2

> on (µl, 0.5)

< on (0.5, 1− µl)

as required.
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B Proofs for Section 4

Proposition (Yoder, 2022). Suppose that D ⊆ Rn and v0, v1 : D → R are upper semicon-

tinuous. Then, for any prior µ0 ∈ ri(D), and any solutions to the persuasion problems:

τ ∗0 ∈ Argmax
τ∈∆(D)

{Eµ∼τv0(µ)s.t. Eµ∼τµ = µ0} τ ∗1 ∈ Argmax
τ∈∆(D)

{Eµ∼τv1(µ)s.t. Eµ∼τµ = µ0}

If v0 is additively more concave than v1 on supp(τ ∗0 ), then

supp(τ ∗1 ) ∩ conv(supp(τ ∗0 )) ⊆ ext(conv(supp(τ ∗0 )))

The original proof of Yoder, 2022 delivers this slightly strengthened version, since the

suggested deviation in the argument by contradiction belongs the support of τ ∗0 .

Proof for Lemma 3. Given the definition of g(·):

d∑
i=1

λig
¯
ω(t, µi)− g

¯
ω (t, µ̄) =

d∑
i=1

λi
∑
ω≥

¯
ω

−∂ψ(ω, t)
∂t

µi(ω)

qo

∑
ω≥

¯
ω

ψ(ω, t)µi(ω)

− qo

∑
ω∈Ωp

ψ(ω, t)µ̄(ω)


Without loss, suppose µK ⪰MLRP µK−1 ⪰MLRP · · · ⪰MLRP µ1. Then, since qo(·) is

increasing in its argument, qo
(∑

ω∈Ωp
ψ(ω, t)µi(ω)

)
is decreasing in i by the regularity as-

sumption. We can find some 1 < j < n, such that:

qo

∑
ω≥

¯
ω

ψ(ω, t)µi(ω)

 ≤ (>)qo

∑
ω≥

¯
ω

ψ(ω, t)µ̄(ω)

 ,∀i ≤ (>)j

In addition, note that

∑
ω≥

¯
ω

−∂ψ(ω, t)
∂t

µi(ω) =
∑
ω≥

¯
ω

Pr(ω′ > ω)

µ0(ω)
[(θ(ω + 1)− θ(ω)]µi(ω)

is non-negative and decreases with i by MLRP ordering and the regularity assumption.

Together, they imply that:

∑
ω≥

¯
ω

−∂ψ(ω, t)
∂t

µi(ω)

qo

∑
ω∈Ωp

ψ(ω, t)µi(ω)

− qo

∑
ω∈Ωp

ψ(ω, t)µ̄(ω)
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≤
∑
ω≥

¯
ω

−∂ψ(ω, t)
∂t

µj(ω)

qo

∑
ω∈Ωp

ψ(ω, t)µi(ω)

− qo

∑
ω∈Ωp

ψ(ω, t)µ̄(ω)


Then, we obtain:

d∑
i=1

λig(t, µi)− g (t, µ̄) ≤
d∑

i=1

λiq
o

∑
ω≥

¯
ω

ψ(ω, t)µi(ω)

− qo

∑
ω≥

¯
ω

ψ(ω, t)µ̄(ω)

 ≤ 0

since qo(·) is concave on [0,∞) whenever c′′′(·) ≥ 0, as long as qo(ω) > 0,∀ω ≥
¯
ω. This is

guaranteed to hold under the seller’s optimal mechanism since all the buyer types whose neg-

ative virtual type contribute nothing to the direct profit (given an upper bound on transfers

derived in Lemma 2). Moreover, given monotonicity in participants , the seller could save

some communication costs by excluding such buyers from participation. This completes the

proof.

Proof of Proposition 2. Note that when a single buyer participates, the statement is true:

the seller collects no information under the optimal information strategy, and the change of

information costs does not affect the realized gains from trade. Suppose the seller serves both

buyer types, and let me consider the convexity of the function:

GT (Eµ[ψ(ω)]) + (Eµ[θ(ω)− ψ(ω)])qo(Eµ[ψ(ω)])

With a binary buyer type, we can simply analyze the second derivative:

∂

∂µ
: (ψ(2)− ψ(1))qo(Eµ[ψ(ω)]) + (θ(2)− ψ(2)− (θ(1)− ψ(1)))qo(Eµ[ψ(ω)])

+ (Eµ[θ(ω)− ψ(ω)])qo′(Eµ[ψ(ω)]) (ψ(2)− ψ(1))

= (θ(2)− θ(1))qo(Eµ[ψ(ω)]) + (Eµ[θ(ω)− ψ(ω)])qo′(Eµ[ψ(ω)]) (ψ(2)− ψ(1))

∂2

∂µ2
: (ψ(2)− ψ(1)) [2(θ(2)− θ(1))− (ψ(2)− ψ(1))]qo′(Eµψ(ω))

+ (ψ(2)− ψ(1))2 (Eµ[θ(ω)− ψ(ω)])qo′′(Eµ[ψ(ω)])

Note that ψ(2)− ψ(1) = θ(2)− θ(1) + µ0

1−µ0
(θ(2)− θ(1)), so that

2(θ(2)− θ(1))− (ψ(2)− ψ(1)) = (θ(2)− θ(1))

(
1− µ0

1− µ0

)
Hence, the second derivative is negative (positive) is µ0 ≥ (≤)0.5 and qo is concave (convex).
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The result follows.

C Proofs for Section 5

Lemma 8. In a model with two buyer types, when getting a low signal realization, the seller

effectively faces a lower expected virtual type under the suggested deviation compared to an

optimal mechanism with no ex-post participation constraints:

µlθ(2) + (1− µl)

(
θ(1)− µ0

1− µ0

(θ(2)− θ(1))

)
> θ(1)− µh

τ(µh)

τ(µl)
(θ(2)− θ(1))

Proof. Under the optimal with no ex-post participation constraints, under the low signal,

the expected virtual type is:

µlθ(2) + (1− µl)

(
θ(1)− µ0

1− µ0

(θ(2)− θ(1))

)
=

θ(1) + (θ(2)− θ(1))

(
µl − (1− µl)

µ0

1− µ0

)
= θ(1) + (θ(2)− θ(1)

[
µ0

τ(l)
− µhτ(µh)

τ(µl)
− (1− µl)

µ0

1− µ0

]
=

θ(1) + (θ(2)− θ(1)

[
(1− µl)

µ0

1− µ0 − τh(1− µh)
− µhτ(µh)

τ(µl)
− (1− µl)

µ0

1− µ0

]
> θ(1)− µh

τ(µh)

τ(µl)
(θ(2)− θ(1))

where I used Bayes-Consistency twice: µl(τ(µl)) + µhτ(µh) = µ0.

Example (Ex-Post Constraints with Improvement). Consider the main illustrative

example for the paper (Quadratic-Entropy). Given the solution outlined for this example,

the optimal information policy is {µl, 1− µl} where µl is:

2(θ(2)− θ(1))2(2µl − 1) = log

(
µl

1− µl

)
4(θ(2)− θ(1))2 − 1

µl(1− µl)
< 0

In particular, take θ(2) = 4 and θ(1) = 2.64, then µl ≈ 0.03. The expected profit under the

initial mechanism is:

0.25(µlθ(2) + (1− µl)(2θ(1)− θ(2)))2 + 0.25((1− µl)θ(2) + µl(2θ(1)− θ(2)))2 ≈ 4.3
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is compared against the expected profit under the deviation, which is:

0.25(1− µl)(θ(2)
2 + 0.25(θ(1)− (1− µl))

2 ≈ 4.316

Finally, we should verify the seller does not want to exclude the low type altogether. If the

seller serves the higher type only, she gets 0.25(θ(2))2 = 4, which is slightly lower than the

expected profit net of communication costs ≈ 4.016.

D Proofs for Section 6

Proof for Proposition 4. First, note that under any feasible mechanism⟨(M,σ,Ωp, α), (q̃, p̃),

p0⟩, the expected payment by every type cannot exceed the total expected surplus: every

buyer pays at most ū
∫
1{q̃(s) = ω}dσ(ds|ω). The seller’s auxiliary problem is then to

maximize: ∑
ω∈Ωp

µ0(ω)

[
ū

∫
q̃(s)dσ(ds|ω)− H̃(Ωp, σ)

]

Just as in the main model, the choice of q̃ does not affect the communication costs, so

maximizing the above pointwise delivers that

qo(s) ∈ Argmax
ω′∈Ωp

{µs(ω
′)}

Applying the same transformation to the communication costs, we can reformulate the prob-

lem in terms of the information policy:

sup
Ωp

sup
τ∈∆2(Ωp)

Pr(ω ∈ Ωp)

[∫
∆(Ωp)

max
ω′∈Ωp

{µ(ω′)} − hΩp(µ)dτ(dµ)

]
subject to BC

Suppose now that in the optimum |supp(τ)| < |Ωp|. Then, there exists some type ω, such

that it never maximizes µs(ω
′) and quality ω is never served. Hence, by the participation

constraint this type could have been excluded with no impact on the expected profit. In ad-

dition, communication costs would decrease by monotonicity in participants . Contradiction.

Then, by Lemma 6, there exists an optimal solution (Ω∗
p, τ

∗) which has affinely independent

support and |supp(τ ∗)| = |Ω∗
p|. Then, the seller can find a price schedule that would generate

expected transfers of ū
∫
1{qo(s) = ω}dσ(ds|ω) for every buyer type. It remains to verify

that (IC) constraints are slack.
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Let sω denote a signal realization, such that quality ω is served under a signal realization

ω. To show (IC), it is sufficient to have:

σ(sω|ω) ≤ σ(sω′ |ω′),∀ω, ω′ ∈ Ω∗
p

For uniform prior distribution, this condition is implied by µsω′ (ω
′) ≥ µsω′ (ω), which must

hold as long as qo(sω′) = ω′.
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