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Abstract

A seller produces goods of two qualities: high and low. While the seller cannot
observe individual product quality, consumers can, and they only purchase high-quality
goods at higher prices. The seller becomes more pessimistic about the unsold inventory
and reallocates it to a discount store. The key insight is that improving product
sorting across stores requires attracting more consumers to a high-priced location so
that fewer high-quality goods remain unsold and become available at a discount. This
greater sorting enables the seller to charge a higher premium for high-quality goods,
but it comes at the cost of reduced sales volume due to fewer consumers purchasing at
higher prices. I extend this equilibrium relationship between sales volume, pricing, and
product sorting to a model with a continuum of stores and provide additional insights
into the seller’s optimal strategy.
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1 Introduction

Many firms rely on outlet stores to mitigate the risks associated with excess inventory, es-
pecially when long design and production lead times coincide with short product lifecycles.
1 To free up valuable shelf space at flagship locations, underperforming products are often
redistributed to outlets, where they are sold at discounted prices. 2 This approach not only
frees up space but also protects flagship sales from “cannibalization.” Since less popular
products are more likely to remain unsold, consumers expect that desirable items will be
harder to find at the outlet, incentivizing them to pay higher prices at the flagship store.

However, this reliance on outlet stores to offload unsold inventory creates several chal-
lenges for sellers. Because consumer demand determines which items remain unsold, shopping
behavior directly influences current revenue and reshapes the product assortment across both
stores. This reshaped assortment feeds back into future consumer preferences and shopping
patterns, creating a tight link between prices, consumer behavior, and inventory composition
at each store.

To address these challenges, this paper develops a theoretical model of store-level pric-
ing and inventory management, focusing on how sellers can manipulate stock composition
through outlet stores under conditions of extreme demand uncertainty. The model high-
lights the key trade-off between total sales volume and store differentiation. When the seller
learns from unsold inventory and accounts for consumers’ store choices, the equilibrium con-
ditions induce an “upward-sloping demand curve” for the high-priced store, meaning that as
prices increase, so does the customer share of a high-priced store—even when consumers are
homogeneous.

To my knowledge, this is the first paper to study product sorting based on past purchasing
behavior while explicitly accounting for consumer incentives in store selection.

Two-Store Model: Key Mechanisms

To fix ideas, suppose a long-lived seller manages two stores: a high-priced flagship store and
a low-priced outlet (Section 2). Each store holds a large number (a unit mass) of products,
each of either high or low quality. The products are homogenous from the seller’s perspective,
but each consumer values a high-quality product more. Consumers engage in a directed

1For instance, Fisher and Raman (1996) provides a case study of Sport Obermeyer, a sportswear man-
ufacturer that commits to production decisions about two years ahead, with 95% of its products being
new designs. More recently, Consumer Technology Association (2023) emphasizes that a product lifecycle
continues to shrink.

2This strategy is documented in Agrawal and Smith (2009), who also point out that while some items can
be discounted within the same store, larger markdowns usually happen at other distribution channels.

1



search, choosing a shopping destination based on prices and the expected quality composition.
All else equal, they favor stores with a higher proportion of high-quality goods since they
randomly inspect one product at their chosen location. Upon inspection, a consumer learns
the product’s quality and decides whether to purchase it at the price posted for the store.
The prices are set so that the consumers only purchase high-quality goods at the flagship but
buy both high- and low-quality goods at the outlet. Additionally, assume that the seller’s
production costs are sufficiently high, so it is too expensive for the seller to throw any of her
goods away.

Without the ability to directly distinguish between high- and low-quality products, the
seller relies on consumers’ purchasing decisions to effectively ‘sort’ the products for her. I
focus on the stores’ steady-state (long-run) quality composition, which emerges as follows.
At the start of each period, a constant flow of short-lived consumers arrives at the market.
Consumers then choose where to shop and whether to purchase the product they inspect.
At the end of the period, the seller restocks both stores back to their full capacity (which
remains fixed over time).

Restocking the outlet with unsold flagship inventory signals lower product quality at the
outlet to consumers. This is the key sorting mechanism: as consumers skim off high-quality
goods at the flagship, the outlet is consistently restocked with products of lower consumer
value. This allows the seller to offer a markdown and offload her low-value items at the
outlet without diverting every customer from the flagship location, as they are willing to pay
a premium for its superior quality composition.

The model’s central insight reveals a limitation of the seller’s sorting mechanism: as the
flagship’s relative quality premium increases, more consumers shop at the flagship, the prod-
uct quality at both stores declines, and the seller loses potential sales volume (summarized
on Figure 1). Intuitively, as the seller acts on the information from goods remaining unsold
to learn more, the seller needs to sell less. Specifically, to enhance the flagship’s quality pre-
mium, the seller accelerates the purchases of high-quality items at the flagship, reducing the
number of such products shipped to the outlet. This requires attracting a larger share of con-
sumers to the flagship. Consequently, the equilibrium restrictions induce an upward-sloping
“demand curve” for the flagship store, even though consumers are homogenous.

While greater quality differentiation allows the seller to charge a higher flagship price,
it comes at a cost: as more consumers shop at higher prices, total sales volume declines.
One reason is the direct effect: as consumers purchase only a fraction of goods (high-quality
items) they inspect at the flagship, more consumers will fail to make a purchase. A second
effect is due to the subsequent change in the quality composition. As lower-quality products
are purchased less intensively, the overall inventory turnover rate falls. The stock is refreshed
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more slowly, and at the steady state, the overall quality composition gets worse across both
stores.

Figure 1: Equilibrium Limitations on Seller’s Pricing Strategy

Note: the figure summarizes the equilibrium relationship of the two stores model key variables (see
Section 2). The sales loss is computed relative to the maximal potential per-period sales volume.

Going Beyond Two Stores

Given the insights from the two-store model, an intriguing question arises: what could the
seller achieve if not constrained by only two stores and instead had the flexibility of utilizing
multiple locations? To explore this possibility, I study inventory replenishment in continuous
time.

I then pursue the question of product screening through multiple locations to its limit by
considering a model of infinitely many (a continuum of) different stores (Section 3). In this
model, the seller selects the joint distribution of prices, consumers, and steady-state quality
compositions across the locations, subject to the same equilibrium constraints. In particular,
the seller can flexibly determine how many stores serve as outlet locations, offering products
at a low price.

First, I characterize the potential steady-state equilibria the seller could sustain with
some prices. I show that equilibria outcomes take a simple form: there exists a threshold
that divides into two groups. On one side of the threshold are all high-priced locations,
where consumers purchase only high-quality goods; on the other side, consumers shop only

3



at outlet locations, offering a low price that compels them to purchase products of any
quality. Additionally, the payoffs of the players are determined by the quality composition
of this threshold, which reduces the dimensionality of the seller’s problem to a choice of a
single parameter.

Similar to the two-store model, the seller faces a trade-off: she can increase store differ-
entiation (worsen the quality composition at the outlet threshold) only by reducing her total
sales volume. When the seller must rely on outlet locations to dispose of low-quality goods,
Theorem 2 also shows the seller maintains a nontrivial measure of such locations. Without
these outlet locations, low-quality products would flood the entire stock, ultimately driving
sales to zero.

Building on the trade-off between outlet quality and sales distribution, I further show that
as the value of high-quality products rises, the seller lowers the outlets’ quality composition
to raise prices at other store locations (Proposition 5). Similarly, as the seller becomes
more certain about the appeal of her products, she screens product types more aggressively.
With increased confidence in product quality, the value of consumers’ expertise in product
assessment diminishes, reducing their leverage to command high information rents.

In addition, I show in Theorem 3 that when the inventory shipments occur infinitely often,
the seller benefits from having infinitely many store locations. A continuum of stores allows
for more nuanced quality-price differentiation, minimizing the risk of misclassifying products
for reduced pricing and thus enabling the seller to capture a greater share of consumer surplus.

Additional Results and Model Limitations

While the baseline model offers initial insights into product assortment, it leaves out many
important aspects of retail business. I address some of these limitations within this paper by
appropriately extending the model. Others remain outside the scope of the paper and offer
interesting venues for future research. I discuss the most prominent ones below.

As a first extension of the model, I allow for direct disposal of inventory. In contrast
to the original model, where the seller frees up shelf space solely through sales, retailers
sometimes choose to destroy unsold products instead of offering discounts. 3 In Section 4.1,
the seller can choose the rate at which the unsold products are destroyed. Direct disposal is
costly, interpreted as the seller bearing either a disposal fee or a replacement (production)
cost. I show the seller uses only one disposal method at the optimum (Proposition 6). When
disposal costs are high, the seller relies on outlets to dispose of the unsold inventory; when

3See, for instance, the recent investigation (Satariano, 2021) into Amazon’s practice of unsold inventory
destruction.
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low, the seller discards inventory directly to maintain high prices across all store locations.
Another extension introduces multiple quality tiers (Section 4.3), acknowledging the com-

plexity of real-world product differentiation. Here, the product can take multiple values for
consumers rather than simply high or low. I verify in Proposition 7 that the main results
can be adapted to this richer framework.

The final extension examines consumer preference heterogeneity (Section 4.4). As existing
literature often emphasizes the role of outlet stores in consumer segmentation,4 I introduce
vertical differentiation in consumers’ willingness to pay for high-quality products. This ex-
tension reveals how product- and consumer-type screening interact. I show that consumers
self-sort along the replenishment chain with earlier locations sustaining higher quality and
prices and attracting higher consumer types (Proposition 8). Outlet locations thus serve a
dual role of managing product assortment and screening consumer types in this version of
the model.

This paper examines how sellers leverage outlet stores for product assortment manage-
ment while recognizing their broader functions, such as market segmentation. To focus on
the consumer’s role in product sorting, the model abstracts away from some crucial aspects
of retail operations. One notable omission is time-based quality depreciation, such as sea-
sonality, which significantly complicates inventory management. Time depreciation enhances
opportunities for quality differentiation but also heightens the importance of rapid inventory
turnover. Additionally, the model limits the seller’s use of sales performance data to a fixed
strategy of reallocating products in a single direction down the line of stores. While this
assumption may reflect practical constraints—where more granular or dynamic data usage
may be prohibitively costly5—it leaves many questions about optimal inventory manage-
ment open. For example, future research could explore whether more flexible approaches to
inventory reallocation could provide further benefits for the seller.

Related Literature

The paper contributes to a broad literature on directed search with adverse selection. In
particular, many papers (see Guerrieri, Julien, and Wright (2017) for a review) study the
sorting and segmentation of different types of agents in the general equilibrium context. In
these models, sellers have superior information about the quality of goods and choose which
contracts to seek in the market. Buyers, in turn, decide which contracts to offer. In equi-
librium, a distribution of contracts emerges that facilitates screening, where buyers balance

4See, for example, Coughlan and Soberman (2005), Ngwe (2017), Li (2023).
5For example, Caro, Babio, and Peña (2019) highlights that Zara offers around 8,000 products annually,

suggesting more nuanced design-level inventory/markdown decisions may be impractical.
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the terms of contracts against the probability of matching, thereby mitigating information
asymmetry.

My model shares key themes with this literature: the probability that a product is of
high quality at a given location can be interpreted as a matching function. Higher-priced
locations provide a greater chance of matching with high-quality goods, allowing the seller
to incentivize consumers to shop at different prices. Guerrieri, Julien, and Wright (2017)
also emphasizes that the relationship between demand and the price in the equilibrium is
ambiguous, depending on the matching function.6 Unlike traditional models focused on
buyer-seller matching, my model shifts the focus to product-specific matching and examines
an optimal market outcome design by a seller. In my model, the seller actively manages
future sales probabilities by adjusting inventory across locations. This strategy allows the
seller to exploit adverse selection in a controlled way, optimizing the product mix across store
types and influencing consumer behavior.

Information aggregation on product quality plays a key role in my model. While other
models (e.g., Lauermann and Wolinsky (2016)) emphasize how well prices aggregate infor-
mation, my approach introduces inventory reallocation as a crucial mechanism for shaping
the quality composition of products across stores. Prices alone do not fully convey all the
necessary information; instead, the seller filters product assortments through locations and
price points, allowing the quality of goods to be sorted along by consumer behavior.

As the seller in my model learns about the product through sales, the paper is also related
to the literature on two-sided learning. Bergemann and Välimäki (1997), Bergemann and
Välimäki (2000), Bergemann and Välimäki (2006), Bonatti (2011) explore market environ-
ments where a firm is initially uninformed about the quality of its product. Over time, the
market gradually learns the product type, with the speed of learning increasing in the speed
of sales, contrary to the trade-off I identify in my paper.

The structure of inventory shipments in my model parallels the hierarchical labor orga-
nization framework presented by Garicano (2000). In their model, firms learn about task
difficulty by passing tasks between workers with different skill levels. Similarly, in my model,
the seller learns about product quality by filtering goods through various price points. How-
ever, while Garicano’s model focuses on task learning within firms, my model operates in
a different context: learning here is driven by consumer behavior, with buyers revealing
information through their purchasing decisions. Crucially, this learning process requires in-
centivizing consumers through strategic pricing.

The paper also contributes to operations research and marketing literature, studying in-
6Although the most widely used function does not generate the positive relationship between the price

and the demand.
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ventory management under uncertain demand. For some of these papers, the seller learns
about the demand for her product with time and updates inventory orders from the produc-
tion accordingly (see Silver, Pyke, and Thomas (2016) for a review). Other papers assume
that current sales affect future demand (either directly—through “contagious’ demand, or
indirectly— through seller’s learning) or when current sales are information implying an ex-
ploration/exploitation problem for the seller (e.g., Hartung (1973), Petruzzi and Monahan
(2003), Caro and Gallien (2007)). Importantly, these papers abstract away from how the
seller’s decisions affect consumers’ incentives to shop at any specific location, which is a cru-
cial part of my paper. Ngwe (2017) adopts a similar model of inventory replenishment for
an empirical analysis of market segmentation using outlet locations but does not account for
the two-sided learning that I explore in my paper. In particular, in Ngwe (2017), the seller
can accurately price her products, and consumers can easily find their preferred product at
the location of their choice.

The paper also contributes to the broad literature on revenue management (see Gallego
and Van Ryzin (1994), Den Boer (2015), Elmaghraby and Keskinocak (2003), Board and
Skrzypacz (2016), Dilme and Li (2019)). These papers study the optimal dynamic prices to
segment the different consumers when they can strategically delay purchases. In my paper,
the prices for a product change dynamically but not due to product (rather than consumer)
heterogeneity.

Methodologically, this paper contributes to the literature on steady-state mechanism de-
sign, as in Madsen and Shmaya (2024) and Baccara, Lee, and Yariv (2020).

2 Two-Store Model

The section outlines a two-store model where a seller manages a high-priced flagship store and
a low-priced outlet to sell products of uncertain quality: high or low. Unable to distinguish
the product quality, the seller relies on past purchases to sort products across the stores.
Specifically, she replenishes the outlet with unsold inventory from the flagship, which is more
likely to be of lower quality. The analysis focuses on the steady-state equilibrium, where
consumers optimally choose where to shop while shaping the long-run product assortment
across the stores. In Theorem 1, I formalize the paper’s key insight on how buyers’ choices
limit the seller’s strategy: raising the flagship price requires drawing more consumers to
the flagship, where they make fewer purchases. Hence, the model underscores the trade-off
between sales volume and product differentiation. The seller benefits from operating both
stores when consumers place a high value on quality or when high-quality goods are produced
frequently enough. The findings of this section set the stage for my analysis of the optimal
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pricing strategy in a more complex setting of Section 3.

2.1 Model

Suppose a single long-lived seller (female) manages two store locations: a flagship store and
an outlet. Each store holds a continuum of products of mass 1. The quality of any particular
product can be either high or low. When produced, each product is of high quality with
probability π. The seller perceives all goods as homogeneous, unable to distinguish their
quality. Consumers (males) derive utility vh from high-quality products and vl from low-
quality products, with vh > vl > 0. Unlike the seller, consumers can identify the product’s
quality upon finding it in the store. Time is discrete and runs over an infinite horizon,
t ∈ {1, 2, . . . }. Each period, a mass λ ∈ (0, 1) of short-lived consumers arrives at the market.

As the seller does not observe the quality of the products, she cannot directly set prices
based on product quality. Instead, she can charge different prices at the two stores. Specifi-
cally, prices at both locations remain constant over time, with the seller charging pf at the
flagship store and po at the outlet.
Inventory replenishment. I assume the seller follows a predetermined inventory policy,
which, combined with consumer purchasing decisions, shapes the quality composition at
both stores. After consumers complete their purchases, the seller replenishes both stores to
full capacity. Replenishment occurs sequentially: first, the outlet is restocked with unsold
items from the flagship’s inventory, chosen randomly. Once the outlet is restocked, the seller
replenishes the flagship store with new products from the production plant. I refer to this
inventory policy as sequential replenishment.7 For the two-store model, I assume the seller
faces prohibitively high costs for directly disposing of her goods.8

Consumer Behavior. The sales of each product type are determined by consumer behavior.
I assume that upon arrival, consumers do not observe the current calendar time and choose
which location to shop at based on each store’s price and their expectations about the quality
composition. Their shopping strategy remains constant over time, with σ denoting the share
of consumers who choose the flagship store.

Each buyer randomly draws a product from the current stock at their selected location and
learns its quality. I assume these product draws occur simultaneously, with each consumer
drawing a unique product. Therefore, if a store i holds a share qi of high-quality goods, each
shopper of this store draws a high-quality product with probability qi.9 Once the product’s

7In Section 2.2.2, I compare this policy with a direct replenishment strategy, where new inventory is
ordered from the production plant for both locations.

8As I explain in the continuous version of the model in Section 4.1, this assumption can be interpreted as
restricting the model’s parameters so that the seller’s production costs are sufficiently high.

9This assumption is reasonable if consumers are small enough relative to the stock.
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quality is known, the consumer decides whether to purchase it based on the store’s price. If
he purchases a product of quality ω ∈ {l, h} at price p, his payoff is vω − p. For simplicity, I
assume that buyers always make a purchase when indifferent.
Restriction on Prices. Given the motivation for the sequential replenishment and to ease
the exposition, I restrict attention to the case where the flagship’s price is high pf ∈ (vl, vh),
so that the consumers only purchase high-quality there. At the outlet, the price is set just
to encourage the purchases of both product types: po = vl. In Appendix B, I discuss other
possible prices and verify it is without loss for the seller’s optimality to restrict prices this
way.
Quality Composition Evolution. The quality composition at each location evolves ac-
cording to the sequential replenishment policy, given that consumers’ purchasing decisions
are rational. Suppose at the beginning of period t, the proportion of high-quality goods at
each store i ∈ {f, o} is given by qit.

Consider the outlet first. At the outlet, consumers purchase any product type they find
(following the tie-breaking rule). Therefore, total sales at the outlet in any given period equal
its consumer flow (1− σ)λ, with a share qot of these sales being of high quality. To replenish
the outlet, the seller ships inventory from the flagship equal to the total outlet sales, (1−σ)λ.
The share of high-quality goods in the shipments is the proportion of high-quality goods in
the flagship’s after-sales remaining inventory, denoted qft,a. Thus, the total change in the
mass of high-quality items10 at the outlet is

∆qot = qft,a(1− σ)− qot (1− σ)

Next, consider the evolution of the quality composition at the flagship store. Since the
flagship’s price is high, consumers only purchase high-quality goods. The total mass of
purchases at the flagship equals σqft , the mass of consumers who find a high-quality product.
The flagship gets restocked to full capacity once consumer purchases and shipments to the
outlet are complete. Hence, the total mass of new inventory ordered from the production
plant to the flagship equals the mass of total sales at both stores in period t, which is
qft σ + (1 − σ). A fraction π of these new items is of high quality. Hence, the change in the
flagship’s share of high-quality items is given by

∆qft = π(qft σ + (1− σ))− σqft − qft,a(1− σ)

Steady-state equilibria in the consumers’ game. For my analysis, I use the steady-
10Given the stock of either store is normalized to one, the change in the proportion of high-quality goods

at any store coincides with the change of their mass.
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state quality composition as part of the solution concept. The quality composition (qf , qo) is
a steady state induced by consumers’ shopping strategy σ when the proportion of high-quality
goods at both stores remains constant over time: ∆qit = 0 for qit = qi.

For simplicity, I assume that once consumers decide where to shop, the market immedi-
ately reaches a steady state. On the seller’s side, one can interpret this assumption as the
seller being infinitely patient but highly averse to profit fluctuations over time in the long
run. On the consumer’s side, this assumption can be interpreted as the consumers’ beliefs
being dominated by the steady-state quality composition.

Consumers select their shopping strategy σ to maximize their expected payoff given the
prices and the steady-state quality composition. At the flagship, consumers expect to find a
high-quality item with probability qf and receive a payoff of vh−pf . If they find a low-quality
item, they leave the market with no purchase. At the outlet, they find high-quality goods
with probability qo and receive vh− vl. With probability 1− qo, they find a low-quality item,
purchase it, and get a zero payoff. Therefore, a consumer’s expected payoff at the flagship
with probability σ is

V B(pf , σ, qf , qo) = σqf (vh − pf ) + (1− σ)qo(vh − vl)

The shopping strategy σ and steady-state quality composition (qf , qo) form a steady-state
equilibrium in the consumers’ game if (qf , qo) is induced by σ and σ is consumer-optimal,
given the prices and expected quality at each store at the steady state. Let Epf denote all
possible equilibria in the consumers’ game given the flagship price pf .
Seller’s Problem. The seller chooses the flagship price pf and any steady-state equilibrium
(σ, qf , qa) ∈ Epf to maximize her per-customer steady-state profit flow in both stores. At the
flagship, customers only purchase at a price pf ∈ (vl, vh) when they find a high-quality item,
which occurs with probability qf . Thus, when a share σ of consumers select the flagship,
the seller’s steady-state flagship revenue is pfqfσ. Consumers purchase both product types
at the outlet, where the price is po = vl, yielding outlet revenue of vl(1− σ). Therefore, the
seller’s total steady-state profit across both stores is

V S(pf , σ, qf ) = pfqfσ + vl(1− σ)

2.2 Sorting Through Sales: Equilibrium Analysis

This section analyzes the two-store model and presents the main insight of the paper in
Theorem 1. I show that sequential replenishment allows the seller to sustain an interior
equilibrium, where she can attract consumers to both the flagship store and the outlet. In
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this equilibrium, as the flagship price rises, more consumers shop at the high-priced store, but
the quality composition at both stores and per-period sales volume decrease. This reveals the
seller’s trade-off between sales rates and store differentiation. Moreover, Theorem 1 shows
that due to the interaction between prices, product sorting, and consumer shopping behavior,
the seller faces an upward-sloping demand curve when setting the flagship price.

2.2.1 Induced Steady State

In this section, I fix a consumer strategy σ and analyze the steady-state quality composition
it induces. I then use the insights gained here to characterize the equilibrium constraints on
the flagship price and consumers’ shopping strategy in Section 2.2.2.

First, I demonstrate that if the seller exclusively relies on the flagship store (σ = 1),
the absence of direct disposal causes low-quality items to overaccumulate. Over time, they
displace the high-quality ones, leading to a point where consumers can no longer find the
goods worth purchasing at premium prices, which drives long-run sales to zero.

In contrast, when some consumers opt to shop at the outlet (σ < 1), each consumer
strategy σ induces a unique steady-state quality composition across stores, which is positive.
In this steady state, the flagship retains a higher proportion of high-quality products than
the outlet. Sequential replenishment thus enables the seller to partially sort product quality
across the two stores, even though she is initially uninformed. Figure 2 illustrates these key
features of the sequential replenishment for the case when σ < 1.
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Figure 2: Sequential Replenishment: Induced Steady State

Production Plant Flagship Outlet

Consumers

Note: The figure illustrates the sequential replenishment rule, with arrows indicating the direction of
inventory flow. The arrows are divided according to the proportion of high- and low-quality items in the
inventory flows: solid lines represent high-quality items, and dashed lines represent low-quality items. Rect-
angles represent the stock of a respective location. Dark shading represents high-quality products, while light
shading represents low-quality ones.

Moreover, both steady-state average quality levels decrease as σ increases. Intuitively,
when a larger share of consumers shop at the flagship, fewer low-quality goods are purchased,
causing these goods to remain in stock longer and occupy more shelf space in both stores.
Importantly, this adverse selection impacts the outlet more severely: as more high-quality
items are purchased at the flagship, fewer of them are shipped to the outlet. Lemma 1
formalizes these key properties of the induced steady-state quality composition.

Lemma 1. If σ = 1, then the induced state is any (qf , qo) ∈ [0, 1]2, such that qf = 0. For
every σ < 1, there exists a unique steady-state quality composition, (qf (σ),qo(σ)). Moreover,

(i) both qf (·) and qo(·) are decreasing,

(ii) qf (·)/qo(·) is increasing,

(iii) qf (0) = qo(0) = π,

(iv) qf (σ) > qo(σ) > 0 if σ ∈ (0, 1).

I now go over the key steps of the proof for Lemma 1 and first consider the steady-state
quality composition for the outlet. If at least some consumers shop there (σ < 1), the
outlet holds the same quality composition as the flagship’s unsold inventory. Indeed, given
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the quality evolution implied by sequential replenishment, the outlet’s quality composition
remains constant, ∆qot = 0, whenever qot (1 − σ)λ = qft,a(1 − σ)λ. Hence, either the outlet’s
quality composition matches the share of high-quality goods in the flagship’s unsold inventory
qo = qfa , or no consumers shop at the outlet σ = 1. For the special case, any outlet’s quality
composition is consistent with a steady state (as there is no inventory movement in the outlet,
any initial quality composition remains constant)

It is now easy to see that the sequential shipments allow the seller to support a quality
premium for the flagship relative to the outlet. As consumers only pick out high-quality
goods at a high flagship price pf ∈ (vl, vh), at the end of the period, the unsold inventory
of the flagship holds more of the low-quality items. I now show this formally. Given the
high prices, the total sales at the flagship equal the total mass of consumers who inspected a
high-quality product, qfσλ. The total remaining stock at the flagship is 1− qfσλ, while the
remaining stock of high-quality goods is qf (1−σλ). This results in the after-sales proportion
of qfa = qf (1 − σλ)/(1 − qfσλ). This proportion is strictly below the flagship’s steady-state
quality composition qf whenever 1 > qf > 0 and a positive share of consumers shop at the
flagship (σ > 0).

I now characterize the flagship’s steady-state quality composition. To do so, I equate the
total outflow of high-quality items to their inflow (∆qft = 0):

σλqf︸ ︷︷ ︸
high quality good sales

in the flagship

+

after-sales proportion of high qualityqfa︷ ︸︸ ︷
qf (1− λσ)

1− qfλσ
(1− σ)λ︸ ︷︷ ︸

inventory shipment
to outlet

= π (qfσλ+ (1− σ)λ)︸ ︷︷ ︸
total inventory order

from production

(1)

In Lemma 7 in Appendix A, I verify that any σ ∈ [0, 1], the above equation uniquely
defines the flagship’s steady-state quality composition qf (σ).

In addition, the more consumers shop at the flagship, the worse its induced steady-state
average quality (see Lemma 7 in Appendix A). To illustrate, consider the two corner cases.
When σ = 1, Equation (1) is satisfied whenever qf = πqf , which only holds if qf = 0. As low-
quality items do not get a chance of being purchased, eventually, they overtake the flagship’s
stock. On the other hand, if all consumers shop at the outlet (σ = 0), then Equation (1)
becomes: qf = π.

Consequently, the outlet’s steady-state quality composition is also unique for any shopping
strategy σ ∈ [0, 1) and is given by the after-sales quality composition of the flagship at the
steady state: qo(σ) = qf (σ)(1− σλ)/(1− σλqf (σ)).

We can now show the average quality of the outlet is affected more by the increased
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adverse selection: qf (σ)/qo(σ) is increasing in σ. To verify this, recall that, at the induced
steady state,

qf (σ)

qo(σ)
=

1− qf (σ)λσ

1− λσ

Differentiating the above with respect to σ, we get:

∂qf (σ)/qo(σ)

∂σ
=

−λσ(1− λσ)∂q
f (σ)
∂σ

+ λ(1− qf (σ))

(1− λσ)2
> 0

where the inequality follows from the fact that the flagship’s proportion of high-quality goods
decreases with the share of flagship shoppers: ∂qf (σ)

∂σ
< 0 (due to Lemma 7 in Appendix A).

2.2.2 Steady State Equilibria

Thus far, I have considered how a given shopping strategy σ affects the quality composition.
Now, to construct equilibria in the consumers’ game, I require the shopping strategy to be
optimal given the prices and the steady-state quality composition at both stores.

Given Lemma 1, the following two corner equilibria can arise for any flagship price pf .
First, the outlet may cannibalize the flagship fully. In this case, all consumers choose the
outlet (σ = 0), and both stores hold the highest possible share of high-quality products,
determined by the production plant’s average: qf = qo = π. Since both stores offer the same
expected quality but the outlet has a lower price, all consumers prefer to shop at the outlet,
making σ = 0 optimal.

In the second corner equilibrium, the seller makes zero sales. Indeed, suppose all con-
sumers choose the flagship σ = 1. By Lemma 1, the flagship’s proportion of high-quality
goods in any induced steady state is 0. For the outlet, any initial quality composition is at
an induced steady state, as it receives no visitors and experiences no inventory movement.
In particular, to sustain this corner equilibrium, we can choose qo = 0 and make consumers
indifferent between the two stores.

However, every flagship price pf ∈ (vl, vh) also allows for an interior equilibrium in which
both stores serve some customers. I now construct such an interior equilibrium. At this
equilibrium, each buyer must be indifferent between the two stores. Otherwise, all con-
sumers would prefer to shop at the same store. Hence, for any given flagship price pf , the
buyer’s shopping strategy σ must be such that the difference in the induced steady-state
quality compositions (qf (σ),qo(σ)) exactly offsets the price differential between the stores:
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qf (σ)(vh − pf ) = qo(σ)(vh − vl) or

qf (σ)

qo(σ)
=

vh − vl

vh − pf

Since qf (σ)/qo(σ) is increasing in σ, one can find a unique share of flagship shoppers
σ(pf ) which sustains this equilibrium for a given flagship price pf . Interestingly, in this
equilibrium, the share of consumers shopping at the flagship increases with the flagship price
pf (Figure 3). The outlet’s payoff premium (conditional on purchase) rises as the flagship
price increases from pf1 to pf2 .

Figure 3: Steady State Equilibrium Shopping Strategy
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Note: the figure plots the quality composition at the steady state for different shopping strategies σ of the
buyers and illustrates the equilibrium shopping strategy for different choices of the flagship price pf .

Therefore, to preserve the flagship store’s attractiveness, the average quality at the outlet
store must fall relative to that of the flagship. A higher degree of quality differentiation
between the two stores can only be achieved if high-quality goods are purchased faster at the
flagship store, requiring more consumers to shop there.

Consequently, the total sales volume λ[σqf +(1−σ)] at this interior equilibrium decreases
in the flagship price. As the flagship price rises, more consumers are pushed towards the
flagship store in the equilibrium, leading to a decline in total sales due to two effects. The
first is a direct effect: consumers do not purchase all product types they find at the flagship
(in contrast to the outlet). The second effect is due to the subsequent deterioration of the
flagship’s steady-state quality composition (due to Lemma 1). As more consumers shop at
the flagship, its average quality declines and it becomes more difficult for flagship shoppers
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to find high-quality products worth buying at a high price, further driving sales down. I
summarize these key takeaways in Theorem 1.

Theorem 1. With sequential replenishment, for every flagship price pf ∈ (vl, vh), there exists
a unique interior steady-state equilibrium exists in the consumers’ game, in which consumers
shop at both stores with positive probability (σ ∈ (0, 1)). Moreover, in this equilibrium, if
price pf increases

i) the customer share of the flagship store σ rises,

ii) the quality composition at both stores (qf , qo) gets worse,

iii) the relative quality-differentiation between stores qf/qo rises,

iv) and the total steady-state per-period sales λ[σqf + (1− σ)] decrease.

Note that Theorem 1 can be interpreted as a version of the Veblen effect. As the flagship’s
price rises, more consumers are attracted to the flagship’s store, as the high-quality becomes
rarer.
Direct replenishment. Before proceeding to analyze the seller’s problem in the next sec-
tion, I will first discuss the benefits of sequential replenishment by comparing it to an alter-
native inventory policy.

Suppose that after the consumer makes their purchases, the seller orders new inventory
to replenish both stores directly from the production plant. I call this direct replenishment.
Unlike sequential replenishment, direct replenishment from the production plant for both
stores would allow for no interior equilibrium, as it fails to leverage information from unsold
inventory.

Suppose that after the consumer makes their purchases, the seller orders new inventory to
replenish both stores directly from the production plant. In this case, when the outlet makes
sales in the amount of λ(1−σ), its inflow of high-quality products becomes πλ(1−σ)—as all
its incoming inventory comes from the production plant. Consequently, the outlet’s quality
composition evolves as follows: ∆qot = πλ(1−σ)−qotλ(1−σ). The flagship only gets restocked
for its own sales, so the new inventory is ordered in the amount of qft λσ, with a share π of
these being of high quality. Therefore, the flagship’s quality composition evolves according
to ∆qft = πλσqft − σλqft .

Proposition 1. With direct replenishment, no interior equilibrium in the consumers’ game
exists. In addition, in any equilibrium, the flagship store makes no sales.
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Proof. Consider an induced steady-state with direct replenishment. qo being at a steady state
requires qo(1 − σ) = π(1 − σ). Then, if qo is at the induced steady state for the shopping
strategy σ, either qo = π, or there are no outlet sales σ = 1.

For the flagship, qf being induced by a consumer strategy σ requires σqf = 0. It follows
that in any steady-state induced by σ the flagship has no sales: either no consumers shop
there, or they can find no high-quality items.

I now show that no interior equilibrium can be supported. Suppose by way of contra-
diction that consumers shop at both stores with positive probability σ ∈ (0, 1). Then, by
the above analysis, in any steady state induced by σ, the outlet has a better product mix:
qo = π > qo = 0. However, the consumer strategy is not optimal then: the outlet offers both
a quality premium and a discount price.

2.2.3 Seller’s Problem

Theorem 1 highlights the fundamental trade-off faced by the seller: improving product sorting
across stores comes at the cost of reducing per-period sales volume. I now explain how the
seller’s pricing problem in my model differs from the classic problem of setting the optimal
monopolistic price.

As shown in Lemma 1, the seller never benefits from exclusively relying on the flagship
store (σ = 1) because it results in poor inventory turnover and ultimately zero sales. Conse-
quently, the seller must either forgo product screening entirely, selling all goods at a low price
in the outlet (σ = 0), or sustain an interior equilibrium where both stores remain active.

The equilibrium relationship between the model’s key variables, customer shares across
stores, quality composition, total sales, and the flagship price, implies the seller can only raise
the flagship price while inducing more consumers to shop there. In particular, Theorem 1
suggests that the seller effectively faces an upward-sloping “demand curve” for her flagship
store σ(pf ).

Conditional on shopping at the flagship, consumers pay a premium price only if they can
find a high-quality item, which happens with probability qf (σ(pf )). As more consumers go
to the flagship, lower-quality items stay unpurchased longer and occupy a larger share of
the stock, resulting in fewer per-flagship-shopper transactions. Formally, consider the seller’s
payoff from an interior equilibrium of the consumers’ game for the flagship price pf :

V S(pf ,σ(pf ),qf (σ(pf ))) = pfσ(pf )qf (σ(pf )) + vl(1− σ(pf ))

= σ(pf )(pfqf (σ(pf ))− vl) + vl
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The seller faces a price-setting problem as if she is facing an upward-sloping demand σ and
a non-linear per flagship-customer revenue curve r(pf ) ≡ pfqf (σ(pf )) − vl capturing the
benefit of shifting a marginal consumer from outlet to flagship location.

Proposition 2 summarizes the conditions under which the seller prefers to leverage the
two-store layout rather than sell all products at low prices: either consumers must value
the high-quality good sufficiently how, or the seller is likely enough to produce high-quality
goods.

Proposition 2. i) For every (π, vl), there exists v̄h(π, vl) ∈ (vl,∞) such that the seller
strictly benefits (does not benefit) from the two stores if vh > (<)v̄h(π, vl).

ii) For every (vh, vl), there exists π̄(vh, vl) ∈ (0, 1) such that the seller strictly benefits (does
not benefit) from the two stores if π > (<)π̄h(vh, vl).

Proof. See Appendix C.

This proposition is intuitive: the seller can only benefit from a two-store layout when
increased high-quality prices can bring enough additional revenue to compensate for a lower
total sales volume.
Frictions of Vertical Integration. Note that Theorem 1 is true even when the seller is
not vertically integrated: it summarizes how the interior equilibrium responds to a change
in the flagship price pf , whenever the market abides with the sequential replenishment rule.

In particular, let me parameterize the ease of vertical integration by α ∈ (0, 1), and
assume the seller only earns α share of the outlet revenue. Specifically, one may interpret
(1− α)vl as the transportation costs associated with moving the items across the locations.

Alternatively, we may assume that the two stores are operated by two different firms, with
the flagship seller owning the production plant. The outlet seller purchases the goods from
the remaining inventory of the flagship and pays αvl for every unit of inventory it receives.
For this model extension, α can then be interpreted as the bargaining power of the flagship
seller.

The consumer’s payoff and the low of motion remain the same as in the benchmark model
without the frictions of vertical integration. Hence, for every flagship price pf , the interior
equilibrium of the consumers’ game is characterized by the same function σ,qf ,qo. But
the flagship seller’s payoff from any pf ∈ (vl, vh) now becomes: V S(pf ,σ(pf ),qf (σ(pf ))) =

σ(pf )pfqf (σ(pf )) + (1−σ(pf ))αvl for some α ∈ (0, 1]. Alternatively, the flagship seller may
charge a low price herself and receive a payoff V S(vl, 1, π) = vl.
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Proposition 3. Suppose both stores are operational: suppf∈(vl,vh) V
S(pf ,σ(pf ),qf (σ(pf ))) >

vl. Then, as the frictions for vertical integration go down (α increases), the flagship seller
sets a lower price pf and attracts fewer customers.

Proof. See Appendix C.

Consequently, consumers benefit from a less frictional vertical integration.

Corollary 1. Suppose both stores are operational. Then, consumers benefit from lower
frictions of vertical integration.

Indeed, by Proposition 3, the seller induces a lower flagship premium as α rises. Then,
by Theorem 1, the quality composition at the outlet store increases, and consumers enjoy a
higher expected surplus there. In the interior equilibrium, consumers are indifferent between
the two stores; hence, they benefit overall.
Replenishment Frequency and Multiple Stores. The two-store model in discrete time
serves as an intuitive benchmark, offering initial insights into how consumer behavior affects
product sorting. Building on these insights, it is natural to ask whether the seller could
benefit from operating more stores. What strategies would the seller adopt if she had the
flexibility to run as many stores as she wanted? Exploring these questions in discrete time
becomes challenging and intractable: When replenishment occurs in discrete time, changes
in the quality composition within a store compete with changes introduced by replenishment.
This can prevent the quality composition from changing consistently along the replenishment
chain.

To resolve this issue, I transition to modeling frequent inventory replenishment in contin-
uous time, an approach used in the subsequent sections of the paper. The reason I presented
the two-store model in discrete time first is that, in continuous time, no product sorting is
achievable when only two stores are operated. This happens because product sorting re-
lies on the difference between the initial and after-sales quality composition at the flagship
store. When replenishment occurs continuously, these two compositions coincide, resulting
in a degenerate case where both stores have the same quality composition at a steady state:
qfa → qf when λ → 0.

3 Continuous Model

In this section, I develop a model in continuous time, where the replenishment occurs infinitely
often. In this model, the seller is not constrained by any fixed number of stores, operating
a continuum of different store locations. The seller selects the joint distribution of prices,
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consumers, and quality composition, subject to the same steady-state equilibrium constraints
as in the two-store model. Despite the richness of the setup, the model remains highly
tractable: the seller’s problem effectively reduces to choosing a single key parameter—the
quality composition at the low-priced locations (Theorem 2). This dimensionality reduction
allows for comparative statics analysis and model extensions (Section 4), providing deeper
insights into the seller’s optimal product sorting.

3.1 Model

As in the two-store version, a single long-lived seller serves a continuum of identical short-
lived consumers. The seller produces a good whose value to a consumer is uncertain and can
be either high vh or low vl (where vh > vl > 0).

Store Locations. Building on the two-store framework, this model explores a more
flexible and nuanced structure for pricing and product sorting across potentially infinite
store locations. To that end, I assume now the seller manages a whole line of store locations
indexed by x ∈ X = (0, 1), where index 0 is reserved for the production plant. I normalize
the cumulative stock across locations to 1 and assume it is evenly distributed across the
available locations. As before, after consumers make their purchasing decisions, the seller
replenishes each location to its full capacity.

Given the benefits of sequential replenishment established for the two-store model, I
assume the inventory flows in a single direction: inventory is replenished from unsold stock
at an immediately preceding location. The direction of product flows is summarized in
Figure 4. For the baseline version of the model, I maintain the assumption that the disposal
costs are prohibitively high: the seller only depletes her stock through sales (I relax this
assumption in Section 4.1).

Store Location (x)

Production
Plant at 0

. . . stock at x . . .

Sales at x

Product Flows

(0 x )1

Sales above
x

Total
Sales

Figure 4: Linear Inventory Shipments: Product Flows within a Period
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Each store location x is characterized by its price p(x) and the proportion of high-quality
products in its stock q(x). I assume that both the price schedule p : X → R and the quality
composition q : [0, 1) → [0, 1] are (Lebesgue-)measurable. The probability of a high-quality
product at the production plant, q(0), is exogenously given by some π ∈ (0, 1).

I assume that both the prices and the quality composition remain constant over time—i.e.,
are in a steady state. Focusing on the steady state, I keep the model tractable while allowing
for an inherently dynamic sorting mechanism across the stores. Despite its advantages,
steady-state analysis has its limitations. First, it may exclude richer dynamic strategies by
the seller. Second, it provides no insights into the optimal way of reaching the steady state.
To address these shortcomings, one would need to consider a more general dynamic model,
which lies outside the scope of this paper.

Since there are only two quality levels, the pricing schedule divides store locations into
three groups: i) where neither quality is purchased, ii) where only high-value products are
purchased, and iii) where both qualities are purchased. I refer to locations in the third group
as outlet locations: x is an outlet location if p(x) ≤ vl.

Consumers. Time is continuous and runs over an infinite horizon. At every instant,
a flow of short-lived consumers arrives at the market in a unit mass (i.e., during a time
interval of ∆, the mass of arriving shoppers is ∆). This continuous-time approach implies
that consumer purchases are small relative to the stock at any location. 11

Each consumer observes the posted prices, anticipates the steady-state quality composi-
tion at every location, and decides where to shop. Let the consumers’ strategy of a shopping
location choice be summarized with a density function σ : X → R+. 12 As I focus on the
steady state, I assume that consumers’ strategy is also constant over time.

Consumers’ search is random within each store: if location x holds a share q(x) of high-
quality goods, then each buyer has a chance q(x) of finding a high-quality item at x. As
before, a buyer breaks ties in favor of the seller when making a purchasing decision13 and
earns a payoff vω − p when purchasing a product of type ω ∈ {l, h} at a price p. The market
outcome is then fully captured by a tuple of price, consumer shopping strategy, and the
steady-state quality composition 〈p, σ,q〉.
Alternative Interpretation: Store Layout. The model can alternatively be interpreted
as the seller managing the layout of a single store. For this interpretation, X summarizes the

11That is, the continuous version of the model is a double limit of a discrete model—as I both make a
period shorter and increase the number of equally-sized stores.

12Here, the consumer strategy specifies the mass of consumers shopping over any interval [x1, x2] of the
store locations:

∫
y∈(x1,x2]

σ(y)dy.
13This assumption does not play any substantive role in the analysis since I am only interested in the

seller-preferred outcomes.

21



different locations inside the store, and consumers’ shopping strategy is now their allocation
of time (or attention) across the different locations within the store. Specifically, we can
assume that each consumer has a unit of time they spend at the store, and they decide how
much time to spend in either location. Then, each consumer inspects one product at random.
The more time (attention) the consumer spends at each location x, the more likely he is to
pick a product from this part of the store rather than elsewhere. The outlet locations can now
be seen as the store’s “clearance racks” sections, where the goods are offered at a discount.
Payoffs. Both consumers and the seller maximize their flow payoff at the steady state. For
a given market outcome, the flow of the consumer surplus is given by:

V B(p, σ,q) =

∫ [
(vh − p(x))+ + (vl − p(x))+

]
σ(x)dx

and the seller’s flow profit is:

V S(p, σ,q) =

∫
p(x)∈(vl,vh]

p(x)q(x)σ(x)dx+

∫
p(x)≤vl

p(x)σ(x)dx

Let TS(·) denote the total market surplus from any market outcome: TS(p, σ,q) =

V S(p, σ,q) + V B(p, σ,q).
In what follows, I consider how the seller optimally chooses the whole market outcome

〈p, σ,q〉 consisting of prices, consumer shopping strategy, and the quality composition at the
steady state. The seller faces the same equilibrium constraints as in the two-store model:
consumers’ behavior and the steady-state quality composition must be mutually consistent
given the prices chosen by the seller. I define this formerly in the remainder of the section.  
Induced Steady State. I start by discussing how the prices and the consumer strategy
shape the steady-state quality composition. The products move across the locations for two
reasons—shipments due to replenishment and consumer purchases.

Fix some interval (x1, x2]. The total purchases of high-quality products in the locations
within this interval equal the mass of consumers who shop at the locations within (x1, x2] hav-
ing a price (weakly) below vh and who draw a high-quality product:

∫
y∈(x1,x2],p(y)≤vh

q(y)σ(y)dy.
This is the total mass of high-quality products that move away from the interval (x1, x2] due
to purchases.

Next, consider the movement in inventory due to shipments. The replenishment policy
implies that the total mass of products shipped from any location x is given by the total sales
volume in the locations above it—downstream sales. The downstream sales are affected by
a whole market outcome. In particular, fix a market outcome m = 〈p, σ,q〉, then the total
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total downstream sales Sm : [0, 1] → R+ for location x are given by:

Sm(x) =

∫
y>x,p(y)∈(vl,vh]

q(y)σ(y)dy +

∫
y>x,p(y)≤vl

σ(y)dy

That is, the downstream sales combine the purchases of all product types at the locations
above x. At the outlet locations, consumers purchase both types of products. At the locations
where the prices are within (vl, vh], consumers only make a purchase if they find a high-quality
product.

Then, the total mass of products that get shipped outside of the interval (x1, x2] is given
by the downstream sales at x2: Sm(x2). As time is continuous, there is no within-period
quality change due to purchases. Hence, if location x2 holds a share q(x2) of high-quality
items, then the shipments of high-quality items amount to q(x2)S(x2). Similarly, the mass
of high-quality items that get shipped into the interval (x1, x2] is given by S(x1)q(x1).

If the quality composition is to remain constant across the locations within the interval
(x1, x2], it must be that the net effect of inventory shipments S(x1)q(x1)− S(x2)q(x2) must
exactly offset all the purchases of high-quality goods made within this interval. Thus, we
obtain the following definition for a quality composition being induced by a consumer strategy
and prices.

Definition 1. For a market outcome m = 〈p, σ,q〉, I say that q is induced by (σ,p) on an
interval [y1, y2] if for any its subinterval (x1, x2] ⊆ [y1, y2]:∫

y∈(x1,x2],p(y)≤vh
q(y)σ(y)dy = Sm(x1)q(x1)− Sm(x2)q(x2)

Similarly, I say that q is induced by (σ,p) if the above is true for any interval [y1, y2] ∈ X.

Before proceeding further, it is useful to establish the following Lemma 2 that summarizes
the main restrictions on the induced steady state for the intervals of non-outlet and outlet
locations.

Lemma 2. Consider some market outcome m = 〈p, σ,q〉.

i) Suppose that p(·) > vl σ-almost surely over [x1, x2] ⊆ X.14 Then, q is induced by (σ,p)

on [x1, x2] if and only if Sm(x)(1− q(x)) is constant over [x1, x2]

ii) Suppose that p(·) ≤ vl σ-almost surely over [x1, x2] ⊆ X and Sm(x2) > 0. Then, q is
induced by (σ,p) on [x1, x2] if and only if q(x) is constant over [x1, x2]

14That is,
∫
p(y)≤vl,y∈[x1,x2]

σ(y)dy = 0. More generally, I say that A holds σ-almost surely over a set Y if∫
y:¬A,y∈Y

σ(y)dy = 0.
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Proof. See Appendix G for a proof.

In words, Lemma 2 states that one of the two things must remain constant over any
interval, where the price does not cross vl: the inventory shipments of the low-quality items
or the quality composition itself. Intuitively, when the price is too high, the only movement
in the low-quality items is due to inventory shipments, and part (i) of the lemma follows. To
get the intuition for why the second part is true, note that consumers purchase both product
types over an interval. Hence, we should expect no learning by the market across the two
neighboring outlet locations.
Equilibrium in the Consumers’ Game. Given the prices, the consumers’ strategy must
be optimal at the induced steady state to form an equilibrium.

Definition 2. Say that market outcome 〈p, σ,q〉 is an equilibrium in the consumers’ game
given a price schedule if

(i) q is induced by (σ,p)

(ii) and for every x, such that σ(x) > 0

x ∈ argmax
y∈X

q(y)(vh − p(y))+ + (1− q(y))(vl − p(y))+

Let Ep denote the set of equilibria for a given price schedule p: a market outcome m′ =

〈p′, σ′,q′〉 ∈ Ep if p′ = p and m′ is an equilibrium in the consumers’ game.

Admissible Price Schedules. Not every price schedule admits an equilibrium in the
consumers’ game: Ep = ∅ for some prices p. To avoid such pathological cases, I introduce a
mild technical constraint on the admissible prices.

To illustrate, suppose that p(x) ≤ vl for all x ∈ X and p is strictly increasing. From
Lemma 2, in any steady state, the quality composition remains constant and coincides with
the production mean (a.e.) over the support of the consumers’ strategy. However, if p is
strictly increasing, then any consumer would benefit by decreasing an index of her shopping
location. No equilibrium of the consumers’ game exists for such a price schedule. In a discrete
model, we would have no problem of this kind because we could construct an equilibrium
where all the consumers shop at the location with the lowest price. To replicate this equi-
librium, I impose a technical constraint on the seller’s price schedule p, requiring that the
lowest price is charged at a non-trivial interval of store locations. I then allow the seller to
make such an interval arbitrarily small.15

15That is, for every measurable price schedule p : X → R+, there exists a sequence of admissible price-
schedules converging to p pointwisely.
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Formally, say that a price p schedule is admissible if there exists a non-trivial interval
such that all locations inside the interval charge the minimal price

¯
p = inf

x∈X
p(x). Let A

denote the set of admissible price schedules.
For every admissible price schedule, the set of equilibria in the consumers’ game is non-

empty (see Lemma 9 in Appendix D). I can now formally define the seller’s problem: the
seller maximizes her flow profit by selecting an admissible price schedule and any equilibrium
in the consumers’ game associated with it.

sup
p∈A,(σ,q)∈Ep

V S(p, σ,q)

3.2 Equilibrium Product Sorting

In this section, I present the main result of the model with a continuum of stores, character-
izing all possible market outcomes that are equilibria in the consumers’ game in Theorem 2.
I show that the payoffs of the market participants are essentially pinned down by a single
parameter—quality composition at the first outlet location. I then use this result to analyze a
seller-optimal market outcome in Section 3.3 show that the seller screens product type more
aggressively when consumers value high-quality products more or when the average quality
at the production plant improves, provided there is not much uncertainty about the product
type.

Theorem 2 below establishes that all the market outcomes that can be sustained as an
equilibrium of the consumers’ game take the following form: there exists some outlet threshold
x̂ ∈ [0, 1] that divides all the locations that the consumers visit between outlet and non-outlet
locations. Formally, I say that a market outcome is a x̂-threshold market outcome if p(·) > vl

on (0, x̂) (σ-a.s) and p(·) ≤ vl on [x̂, 1] (σ-a.s.). In addition, Theorem 2 the payoffs to both
players are effectively pinned down by the quality composition at this outlet threshold.

Theorem 2. Suppose the market outcome (p, σ,q) is an equilibrium in the consumers’ game.
Then, it is a x̂-threshold market outcome for some x̂ ∈ [0, 1]. Furthermore:

i) If no consumers shop at outlet locations, i.e.,
∫ 1

x̂
σ(y)dy = 0, both players receive zero

payoff: V S(p, σ,q) = V B(p, σ,q) = 0.

ii) If some consumers shop at outlet locations, i.e.,
∫ 1

x̂
σ(y)dy > 0, the total surplus is

determined by the quality composition at the threshold x̂:

TS(p, σ,q) =
πvh + (1− π)vl

ln
(

π
1−π

1−q(x̂)
q(x̂)

)
(1− π) + 1
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Moreover, when q(x̂) < π, the buyers’ payoff is V B(p, σ,q) = q(x̂)(vh − vl), and when
q(x̂) = π, V B(p, σ,q) ≥ q(x̂)(vh − vl).

Thus, Theorem 2 effectively summarizes the limitations of the seller’s strategies for the
continuous version of the model. Despite the seemingly rich space of available seller choice,
the equilibrium conditions of the consumers’ game imply that the seller only selects the degree
to which the high-quality goods are screened out before they reach an outlet threshold.

Proof. First, I show that unless the seller makes zero steady-state sales, she must have a
positive measure of consumers shopping at outlet locations. Intuitively, if no consumers shop
at the outlet locations, low-quality items eventually fill all available shelf space across all
store locations. As consumers only want to buy high-quality goods at higher prices, they
stop making any purchases when facing only undesirable products.

Lemma 3. Consider any market outcome m = 〈p, σ,q〉 with p ∈ A, σ,q ∈ Ep. If there are
no sales at the outlet locations

∫
p(x)≤vl

σ(x)dx = 0, then the seller makes zero total sales:
Sm(0) = 0.

Proof. Suppose otherwise, Sm(0) > 0 and
∫
p(x)≤vl

σ(x)dx = 0. Then, by Lemma 2 (i),
Sm(x)(1−q(x)) is constant over X and converges to 0, since Sm(1) = 0 and Sm is continuous.
This is only possible if Sm(x)(1 − q(x)) = 0,∀x ∈ X. By Lemma 10 (i) in Appendix F,
Sm(x)(1−q(x)) is right-continuous at 0 if Sm(0) > 0, so that we must have Sm(0)(1−q(0)) =

0. However, q(0) = π < 1, and we obtain a contradiction with Sm(0) > 0.

Suppose no consumers shop at the outlet locations under some market outcome m =

〈p, σ,q〉. Then, m is a threshold market outcome for a threshold outlet x̂ = 1. By Lemma 3,
the seller makes zero steady-state sales in such a market outcome, and hence the total surplus
is also 0. This delivers part (i) of the additional result in the theorem.

On the other hand, when a positive measure of consumers shop at the outlet locations,
the steady-state sales are strictly positive, as consumers purchase both types of products
at such locations. Then, due to Lemma 3, we obtain the sales are positive if and only if a
positive measure of consumers shop at the outlet locations.

Let us restrict attention to the market outcomes with positive sales from now on. Lemma
below confirms that all such market outcome are also threshold market outcomes.

Lemma 4. Suppose a market outcome (p, σ,q) is an equilibrium in the consumers’ game.
Then, (p, σ,q) is a threshold market outcome for the outlet threshold x̂ = inf{x ∈ X : p(x) ≤
vl}.

Proof. See Appendix G.
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Intuitively, Lemma 4 holds because the quality composition is non-increasing (due to
Lemma 2 (i)). When prices are high, due to consumers skimming off high-quality goods
and the quality of the products down, the replenishment chain gets worse. Because of this,
consumers will never have an incentive to shop at the locations that charge a high price past
a threshold x̂—they offer a worse product mix and higher prices. As a result, the locations
naturally divide into two groups: one where consumers buy only high-quality products at
higher prices and another where consumers buy any product quality at lower outlet prices.

For threshold mechanisms, we can characterize an induced steady state using Lemma 2. In
particular, on the interval containing non-outlet locations (0, x̂), the evolution of the relative
likelihood between the two quality levels is captured by the Lambert functionW : R++ → R+,
where W (x) is implicitly defined as:

W (x)eW (x) = x

Lemma 5 highlights the interdependence between the consumers’ selection of stores and
the speed at which the quality composition decreases along the replenishment chain.

Lemma 5. For any threshold market outcome 〈p, σ,q〉 with an outlet threshold x̂ and positive
sales, q is induced by (σ,p) on [0, x̂] if and only if for every x ∈ [0, x̂]:

q(x)

1− q(x)
= W

(
π

1− π
exp

[
π

1− π
−

∫ x

0
σ(y)dy

(1− q(x̂))
∫ 1

x̂
σ(y)dy

])

for (1− q(x̂))

(∫ 1

x̂

σ(y)dy

)[
ln

(
π

1− π

1− q(x̂)

q(x̂)

)
+

1

1− π

]
= 1 (Q-T)

Proof. See Appendix G.

Equipped with Lemma 5, I can now characterize the total surplus of any market out-
come with positive sales and show that it only depends on the outlet threshold’s quality
composition.

Lemma 6. In any threshold market outcome p ∈ A, (σ,q) ∈ Ep with an outlet threshold x̂

and positive sales:

TS(p, σ,q) =
(
πvh + (1− π)vl

)
/

(
ln

(
π

1− π

1− q(x̂)

q(x̂)

)
(1− π) + 1

)
with q(x̂) ∈ (0, π]. In addition, V B(p, σ,q) = q(x̂)(vh − vl) if q(x̂) < π and V B(p, σ,q) ≥
q(x̂)(vh − vl) if q(x̂) = π.
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Proof. By definition, locations [x̂, 1) are outlet locations σ-a.s. Hence, for every location in
x ∈ [x̂, 1), the total downstream sales in a market outcome m = 〈p, σ,q〉 coincide with the
total mass of consumers shopping above x: Sm(x) =

∫ 1

x
σ(y)dy. Clearly, Sm(·) > 0 for all

locations in [x̂, 1) (σ-a.s.). Then, from Lemma 2 (ii), (σ-a.s.) all of them have the same
quality composition, equal to q(x̂).

Hence, the cumulative total surplus from locations above x̂ is

[
q(x̂)vh + (1− q(x̂))vl

] ∫ 1

x̂

σ(y)dy

—the expected quality of the good times the number of consumers shopping at these locations.
As a positive share of consumers shop in locations in [x̂, 1), which have the same quality
composition q(x̂) and charge a price of at most vl-σ-a.s., consumer payoff is at least q(x̂)(vh−
vl).

By Equation (Q-T) in Lemma 5, q(x̂) ∈ (0, π] whenever
∫ 1

x̂
σ(y)dy > 0, which is true as

long as the market outcome has positive sales due to Lemma 3.
The price is low at x̂ (or its right neighborhood) and therefore offers a positive consumer

surplus (q is continuous at x̂ by Lemma 10 in Appendix F).
Consequently, consumers must at least purchase high-quality items at all locations they

visit. As all preceding locations x < x̂ are non-outlet locations, then they only sell high-
quality items. Then, the total surplus from locations (0, x̂) in a market outcome m =

〈p, σ,q〉 equals the total sales on this interval times the value of the high-quality product
vh [Sm(0)− Sm(x̂)] v

h.
As prices are high at all locations on (0, x̂], the inventory shipments of low-quality products

must exactly offset each other at the induced steady state on [0, x̃]: Sm(0)(1−π) = Sm(x̂)(1−
q(x̂)) by Lemma 2.

Recall that total downstream sales at x̃ coincide with the mass of consumers shopping
above it: Sm(x̂) =

∫ 1

x̂
σ(y)dy—as locations [x̂, 1) are outlet σ-a.s. Then, we obtain:

Sm(0)(1− π) = Sm(x̂)(1− q(x̂)) = (1− q(x̂))

∫ 1

x̂

σ(y)dy

and the total surplus simplifies as follows:

TS(p, σ,q) = vh [Sm(0)− Sm(x̂)] +
[
q(x̂)vh + (1− q(x̂))vl

] ∫ 1

x̂

σ(y)dy

= vh
π − q(x̂)

1− π

∫ 1

x̂

σ(y)dy +
[
q(x̂)vh + (1− q(x̂))vl

] ∫ 1

x̂

σ(y)dy
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=
(
πvh + (1− π)vl

) 1− q(x̂)

1− π

∫ 1

x̂

σ(y)dy

=
(
πvh + (1− π)vl

)
/

(
ln

(
π

1− π

1− q(x̂)

q(x̂)

)
(1− π) + 1

)
where the last equality follows from Equation (Q-T) in Lemma 5.

Finally, note that whenever q(x̂) < π, a positive measure of consumers shop at non-
outlet locations (due to Equation (Q-T) in Lemma 5). In this case, I show in Lemma 13 in
Appendix F that consumers shop at prices (weakly) above vl σ−a.s. Then, it follows that
the consumer payoff is pinned down by q(x̂): V B(p, σ,q) = q(x̂)(vh − vl).

Intuitively, this is because the quality composition changes continuously at x̂, and if the
price was to get below vl, the consumers would prefer to deviate to such outlet locations, as
they offer only a marginally worse quality composition but a discretely better price.

Lemma 6 implies part (ii) of the additional part of the theorem, which completes the
proof.

Theorem 2 characterizes which payoffs can ever arise in some equilibrium in the con-
sumers’ game. In a complementary result of Proposition 4, I show that the seller can always
construct a market outcome that would sustain any payoff as in Theorem 2 (ii).

Proposition 4. For every q ∈ (0, π], there exists a x̂-threshold market outcome p ∈
A, (σ,q) ∈ Ep, such that:

i) it has a positive measure of outlet shoppers

ii) the outlet-threshold x̂ has the quality composition q: q(x̂) = q

iii) and attains a lower boundary of consumer payoff  V B(p, σ,q) = q(vh − vl)

Proof. See Appendix G.

In Appendix G, I construct such a market outcome for every q with a uniform consumer
strategy σ(x) = 1. To construct the quality composition, I rely on Lemma 5 and Lemma 2.
The prices are then pinned down by the consumers’ indifference condition across the locations.

3.3 Seller-Optimal Product Sorting

In this section, I analyze the main properties of a seller-optimal market outcome, focusing on
how its shape is affected by the model’s parameters. In particular, I show that as high-quality
goods become more valuable or prevalent, optimal product sorting becomes more profitable
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to the seller. In addition, as the value of the high-quality product increases, the seller aims
for a more aggressive screening between the different locations to charge higher prices.

Given Theorem 2 and Proposition 4, we can reduce the seller’s problem to the choice of
a quality composition at the threshold outlet location.

Corollary 2. Suppose that a x̂-threshold market outcome p ∈ A, (σ,q) ∈ Ep, then the quality
composition at the outlet threshold q(x̂) ∈ Argmax

q∈(0,π]
Ṽ S for:

Ṽ S(q) =
πvh + (1− π)vl

ln
(

π
1−π

1−q
q

)
(1− π) + 1

− q(vh − vl)

Sorting/Sales Trade-Off. Note that in the continuous version of the model, the seller faces
the same trade-off between sales volume and the degree of product sorting. As the seller aims
to screen the products more aggressively and leave fewer high-quality goods for the outlet
locations, more buyers must shop at high prices. In turn, this exacerbates adverse selection
for the stock at all locations, and the quality composition worsens everywhere. Consequently,
the market outcome becomes less efficient: the total sales volume declines as more consumers
purchase only one type of product upon inspection (direct effect), and finding a high-quality
good becomes harder (quality composition effect).

Figure 5: Steady-State Quality Composition

Note: the figure depicts the effect of a decrease in the targeted outlet quality composition (qo1 > qo2)
on the steady-state quality distribution and sales volume. qi(·) and Si(0) denote the steady-state quality
composition and total sales volume given the outlet quality qoi . The hashed area plots the associated sales
loss as the seller screens products more aggressively, decomposing it into a direct effect (west to east hatch)
and the quality composition effect (northeast to southwest hatch).
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From Corollary 2, the seller only chooses the quality composition at the outlet threshold
locations, which is the main focus of the comparative statics exercises in this section. First,
in Appendix H, I establish an analog of Proposition 2 for the continuous model: The seller
offers outlet locations only and does no product sorting when either the consumer’s valuation
of high-quality goods (vh) or the probability of producing high-quality goods (π) is low
(Proposition 9).

Figure 6: Seller’s Payoff

Note: the figure depicts the seller’s payoff as a function of the outlet threshold quality composition for
different proportions of the high-quality product at the production plant, with π2 > π1. The dots of the

respective color are plotted at the seller’s optimum.

With a continuous model, I can do a more precise comparative statics exercise studying
how the optimal screening intensity changes with the model parameters. As vh increases,
the intensity of screening rises—the quality composition at the outlet threshold locations
decreases. Consequently, the seller can charge higher prices at all non-outlet locations. Sim-
ilarly, the seller sorts products more aggressively when the production technology improves
(π rises), provided there is little uncertainty in the product quality. I summarize these com-
parative statics exercises in Proposition 5.

Proposition 5. The optimal quality composition at the outlet locations decreases if

i) vh goes up,

ii) or π ≈ 1 and increases.

In addition, as vh increases, the price increases at every location in X for the seller-
optimal with a uniform consumer strategy.
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Proof. See Appendix H.

Figure 7

(a) Optimal Price Schedule

Note: the figure illustrates that the price rises for all
locations at an optimal price schedule as the value of

a high-quality good increases from vh1 to vh2 .

(b) Optimal Quality Composition at Outlet Locations

Note: the figure illustrates that the optimal screening
intensity rises with the value of a high-quality good.

Specifically, it illustrates that the quality composition
at the outlet threshold worsens as vh increases.

Consequently, Proposition 5 (ii) implies that the consumer’s payoff is non-monotone with
respect to π.

Corollary 3. The consumer’s payoff at a seller’s optimal market outcome is non-monotone
with respect to π.

Intuitively, on the one hand, a higher probability of high-quality products makes the pro-
duction technology more favorable and potentially presents a greater chance of encountering
a high-quality good. The consumers enjoy this positive effect fully when π ≈ 0 and the seller
does no product sorting. On the other hand, a higher π decreases the information asym-
metry between the consumers and the seller. Consequently, the seller may extract a higher
consumer surplus with lower efficiency losses.

4 Discussion

In this section, I discuss the limitations of my model. Some of these limitations I can address
with appropriate extensions. First, I relax the assumption of prohibitively high replacement
costs and allow the seller to dispose of unsold inventory directly. I show that the seller uses
only one disposal channel and either offers outlet stores or disposes of unsold stock directly,
keeping prices high. I also generalize this insight for the model with multiple quality tiers.
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Second, I relax the technical restriction on the distribution of consumers across the stores by
allowing it to admit atoms. I show that the seller benefits from having an unlimited number
of non-outlet locations, which allows her to make the product screening more precise. Last
but not least, I formulate the extension of the benchmark model that allows for heterogeneous
consumers. I show that a positive sorting arises between the consumer types and the quality
composition at their shopping location.

I also highlight the questions that this paper does not address. Specifically, I explain why
allowing depreciation of the product quality makes the model less tractable. In addition, I
point out the potential future direction of the research that would account for the product
flow design across multiple location stores.

For brevity, I do not provide a full exposition of the model extensions and focus on its
main insights. For the complete formulation, see Appendix E (for the models considered in
Section 4.1 - Section 4.3) and Appendix L (for the model of Section 4.4).

4.1 Direct Disposal

As a first extension, I allow for the direct disposal of unsold items. Proposition 6 establishes
that the seller uses only one channel when disposing of low-quality products. The seller
offers outlet locations if the replacement/disposal cost is sufficiently high. Otherwise, the
seller offers only disposes of the low-quality products directly by destroying them.

Now, I consider a version of the model that allows for the direct disposal of the products.
In particular, I assume the seller may also choose to destroy the unsold inventory at a rate
γ at some per-unit disposal cost κ > 0. Equivalently, κ can be interpreted as a per-unit
production cost. For this interpretation of the model, the value of the product of type vω is
the consumer’s value for the product net of the product costs.

To preserve the linear nature of the inventory shipments, the products that get sent
away are stored at the location with an index of 1 (for technical simplicity, location 1 is not
available for shopping and is only used for storing the products that are to be sent away).
Note that we can keep the model the same but must allow this special location 1 to make
sales at a negative price of −κ. In Proposition 6, I summarize the main result for this version
of the model, stating the seller uses only one disposal method.

Proposition 6. The seller disposes of the low-quality goods through one channel only. In

particular, there exists κ̄(vh, vl, π) ∈
(
max
q∈(0,π]

Ṽ S(q)− vl, π
1−π

vh
)

, such that

i) if κ < κ̄(vh, vl, π), then in any optimal market outcome, there are no outlet locations
p(x) > vl
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ii) if κ > κ̄(vh, vl, π), then there is no direct disposal γ = 0

In addition, κ̄(vh, vl, π) is decreasing in the value of a low-quality product vl.

Proof. See Appendix I.

The seller faces a trade-off between relying on consumers to buy low-quality goods at
discounted prices or paying a cost to dispose of them. If the cost of disposal is relatively low,
the seller finds it cheaper to clear shelf space quickly by destroying the product herself rather
than offering discounts to attract outlet shoppers. Conversely, if disposal costs are high, the
seller prefers to incentivize consumers to purchase low-quality products.

4.2 Atoms in the Shopping Strategy

In this section, I extend Theorem 2 to a more general shopping strategy. The total surplus
only depends on the same mass of outlet shoppers and the quality composition at the outlet
threshold. Using this technical result, I then show that any market outcome with finitely
many non-outlet locations is seller-suboptimal. Consequently, we may conclude that the seller
benefits from an infinite number of stores as it makes the product screening more precise.

Suppose the shopping strategy is summarized by a cdf D : [0, 1] → [0, 1] where D(x)

denotes the total mass of consumers shopping in (0, x]. Now, the shopping strategy D may
potentially be discontinuous, allowing for atoms in consumer distribution across the locations
in (0, 1). It turns out the seller finds it suboptimal to make the customer share of any non-
outlet location large.

Theorem 3. Any market outcome (p, D,q, γ) that is an equilibrium in the consumers’ game
is a x̂-threshold market outcome for some x̂ ∈ [0, 1]. Furthermore, if the total sales are
positive, the total market surplus is given by

TS(p, D,q, γ) =

(∫ 1

x̂

dD(y) + γ

)
(1− q(x̂−))

(
π

1− π
vh + vl

)
− γq(x̂−)(vh − vl)− γ(κ+ vl)

In addition, if D admits finitely many discontinuities at non-outlet locations, then the
market outcome p ∈ A, (D,q) ∈ Ep,γ is suboptimal for the seller.

Proof. See Appendix G.

The first part is simply an extension of Theorem 2. The main proof steps are the same.
Note that for the same share of outlet shoppers, the seller wants to do as much screening as
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possible. Indeed, due to Theorem 2, the total surplus is decreasing in q(x̂−). In addition,
more aggressive product screening allows for better consumer surplus extraction.

The intuition of the additional part of the theorem can be formulated as follows. If
an atom is at some non-outlet location, then the seller’s learning is “bunched,” and she
wastes some of the sorting opportunities. The seller could benefit by making the learning
slower between the locations, as it makes her own selection of products used for inventory
replenishment more fine-tuned. Essentially, the seller uses consumer purchasing decisions to
sift out lower-quality products. By having a larger number of store locations, the seller makes
the sift denser, which allows for more efficient separation of high-quality items. Lemma 15
in Appendix F provides a formal proof of this argument.

This extension also highlights a key distinction between the model presented here and
traditional monopolistic screening models. With two consumer types, the seller only needs
two menus to differentiate between the different consumer groups. In contrast, when it comes
to sorting different product types, the seller prefers to have infinitely many menus (locations),
even when the product types themselves are also binary.

4.3 Multiple Quality Tiers

In this section, I demonstrate how the model can be generalized to accommodate richer
quality differences of the products. Proposition 7 establishes that the key insights continue to
hold even when the product quality is non-binary: the seller’s problem is still one-dimensional
and can be reduced to the choice of the consumer surplus.

Suppose now that the product has N quality levels, which bring consumer values v1 >

v2 > · · · > vN , respectively. I revert to a simpler version of the model where the shopping
strategy admits a density. The steady-state quality composition is now described by q :

{1, . . . , N} × [0, 1] → [0, 1], where q(i|x) denotes the share of quality i at location x.

Proposition 7. Consider any two market outcomes 〈p, σ,q, γ〉 and 〈p′, σ′,q′, γ〉. Then,

i) V S(p, σ,q, γ) = V S(p′, σ′,q′, γ) whenever V B(p, σ,q, γ) = V B(p′, σ′,q′, γ)

ii) If γ = 0, then in any market outcome with positive sales, there is a positive measure of
buyers shopping at prices no higher than vN :

∫
p(y)≤vN

σ(y)dy > 0.

iii) If γ > 0, there exists
¯
p such that if vi <

¯
p, quality i is only directly disposed of.

Proof. See Appendix K.

The first part of Proposition 7 indicates that the induced payoff of the buyer essentially
pins down the seller’s market outcome. The key steps of the proof rely on the following two
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observations. First, the quality composition can change between the different store locations
only due to the consumer making different product purchasing decisions. As such, unless
the price crosses {vi}ni=1, the relative composition of products conditional on the purchasing
decision remains constant (see Lemma 11 (ii) in Appendix F).

Second, to satisfy the indifference condition for the consumers, the change in the quality
composition must exactly compensate for the price change between any two locations in the
(interior) of the support of σ. The first observation above also implies that the expected value
of a product conditional on purchase also remains constant unless the price crosses one of
the product’s values. Hence, whenever the price changes from vi to vi+1 on some interval, the
purchase probability must change just enough to leave the consumer indifferent throughout
the interval.

Generalizing Lemma 4, I show that i) in every market outcome, the price crosses each of
{vi}ni=1 at most once, inducing a partition over X; and ii) the targeted change in purchasing
probability determines the mass of consumers who shop at prices between any vi and vi+1.
As a result, the role of price is still very limited, even with multiple quality levels. The seller
effectively only needs to set two threshold prices: the highest price (through the selection of
the consumer surplus) and the lowest threshold price (by appropriately adjusting the disposal
rate).

4.4 Consumer Heterogeneity

In this section, I formulate the main extension of the benchmark model that allows for
heterogeneous consumers. I show that a positive sorting arises between the consumer types
and quality composition at their shopping location. Specifically, higher consumer types shop
at earlier locations. The outlet locations are used both for product assortment management
and consumer segmentation. The seller’s problem can be reduced to choosing the highest
type of shopping at an outlet location.

Consider the model with a binary quality from Section 3, but assume that the consumers
are heterogenous in their valuation of a high-quality product. Specifically, I assume that a
consumer of type θ values a high-quality product at θ ∈ Θ = [vl, vh] and values a product of
low quality at vl.16 I assume that F : Θ → [0, 1] is a cdf over the possible consumer types,
which admits a density f : Θ → R over the entire support Θ.

As before, each shopping location in X is characterized by its price and quality com-
position, which are observable to all consumers. Consumers of each type select a shopping

16For interpretation, I assume that vl represents a utilitarian value of the product, whereas θ captures a
taste for fashion.
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location, and, for simplicity, I focus on the market outcomes that fully separate the different
types of consumers. That is, I assume that for any market outcome, an injective function
x : Θ → X exists, such that all consumers of type θ shop at location x(θ).

The payoffs of the agents now become:

V B(p,x,q|θ) = q(x(θ))(θ − p(x(θ))+ + (1− q(x(θ)))(vl − p(x(θ))+

V S(p,x,q) =

∫
p(x(θ))≤θ

p(x(θ))q(x(θ))f(θ)dθ +

∫
p(x(θ))≤vl

p(x(θ))f(θ)dθ

As consumers are heterogeneous, the optimality of the consumer’s shopping strategy x

now requires that neither of the consumer types has a profitable deviation from the prescribed
shopping location to any other store (given the distribution of prices and steady-state quality
composition).

Definition 3. Say that q,x is an equilibrium in the consumers’ game (with heterogeneous
types) if q is induced by x,p and for every θ ∈ Θ and every x ∈ X

V B(p,x,q|θ) ≥ q(x)(θ − p(x))+ + (1− q(x))(vl − p(x))+ (IC)

To state the main results of this extended model, it is useful to introduce the induced
allocation of quality Q : Θ → [0, 1] with Q(θ) = q(x(θ)) for every θ. That is, Q simply
summarizes the quality composition encountered by every type in the market outcome.

Proposition 8 establishes negative sorting between consumer types and store locations.
Intuitively, higher types must be sorted into locations that offer higher expected quality in
any equilibrium. From our earlier analysis, the quality composition is decreasing along the
replenishment order, encouraging consumer types to also sort in a decreasing order.

Proposition 8. For every market outcome with positive sales, there exists θ̄ ∈ (vl, vh] such
that all types (θ̄, vh] shop at non-outlet locations; and types [vl, θ̄) shop at outlet locations. In
addition, x is decreasing on [θ̄, vh].

Proof. See Appendix L.

Given Proposition 8 and our analysis of a homogenous buyer, we can now characterize
the induced allocation of quality. Indeed, the size of the outlet share is now captured by the
mass of consumers whose type is below the threshold θ̄. Similarly, as the quality composition
is non-increasing, higher types must then choose to shop at earlier locations. Hence, the
amount of screening for type θ’s induced quality composition is determined by a mass of
consumers of higher types. For a given threshold type θ̄, the induced allocation must then
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satisfy:

Qθ̄(θ)

1−Qθ̄(θ)
= W

(
π

1− π
exp

[
π

1− π
− 1− F (θ)

F
(
θ̄
) (

1−Qθ̄
(
θ̄
))])

and Qθ̄(θ̄) is satisfies:

ln

(
π

1− π

1−Qθ̄(θ̄)

Qθ̄(θ̄)

)
=

1

F
(
θ̄
) (

1−Qθ̄
(
θ̄
)) − 1

1− π

The standard argument (as in Mussa and Rosen (1978)) can be used to establish the
payoff for every consumer type shopping at non-outlet locations satisfies the standard en-
velope condition. Consequently, a consumer’s virtual type determines the seller’s additional
payoff (relative to charging vl at all stores) at non-outlet locations (conditional on purchase).
Contrary to Mussa and Rosen (1978), conditional on the market segmentation between out-
let and non-outlet locations, the seller cannot decide on the offered menus and relies on the
consumers to form the menus for her by sorting the product types through sales. Conse-
quently, the seller’s problem reduces to segmenting her customer base between the outlet
and non-outlet locations by selecting the threshold type θ̄. I summarize this observation in
a corollary below.

Corollary 4. In a model with heterogenous consumers, the seller’s problem is equivalent to
the optimal choice of θ̄ ∈ (vl, vh] so that to maximize

∫ vh

θ̄

Qθ̄(θ)

(
θ − 1− F (θ)

f(θ)

)
dθ − (1− F (θ̄))Qθ̄

(
θ̄
)
+ vl

4.5 Unaddressed Model Limitations

In this section, I highlight key questions that fall outside the scope of this paper but offer
promising avenues for future research.
Quality Depreciation. So far, I have assumed that the preferences for any particular
product remain constant over time. But in real life, even popular designs lose customer appeal
with time. For instance, in the apparel industry, this may happen due to the seasonality of
products. Within this paper, one could accommodate time depreciation by assuming that,
with some probability, a unit of unsold high-quality inventory loses its value and becomes of
low quality.

In Appendix A, I extend the two-store model to verify that the model’s main market
outcomes remain robust in the presence of depreciation. Specifically, the same co-movement
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between the model’s key variables remains true when allowing for depreciation. That is, the
same trade-off between sorting and the sales volume is still present.

However, with time depreciation, the irrelevance result for the continuous model no longer
holds: the quality at the outlet locations does not simply depend on the “screening budget”
(which is pinned down by the mass of non-outlet shoppers) but also depends on the average
time the goods spend unsold before reaching the outlet. Consequently, the seller gets a
new leverage of exploiting time and must balance a new trade-off. The seller can “speed
up” turnover and dampen the effect of depreciation by increasing the customer share of
the earlier locations. By doing so, the seller improves the average quality composition and
increases sales volume at high-priced locations but prevents the goods from getting damaged
before reaching outlets.
More General Product Flows. My model has greatly constrained the seller’s usage of
sales performance data. As argued in the introduction, this assumption may be justified by
the high cost of more nuanced inventory management decisions due to the great volumes
of inventory items. Nevertheless, even lacking the ability to track each item’s performance
individually, it seems reasonable to explore how the seller can use other automated inventory
shipment rules (not necessarily linearly ordered) to redistribute the unsold stock across the
different locations.

For instance, a natural question to ask is whether the seller would benefit from having
two separate lines or brands, both with their high-quality stores and own outlets. Similarly,
if the seller manages a single outlet line for the two brands, would she benefit from merging
them? Given the model’s tractability, it seems promising to allow for the analysis of these
richer shipment rules within the suggested framework.
Frequency of Replenishment. As argued before for the two-store model, the frequency of
inventory replenishment offers another strategic tool for the seller to enhance product sorting
efficiency. Exploring the impact of replenishment frequency, particularly in scenarios where
stock-outs occur, could provide additional valuable insights.

I believe these potential model generalizations will provide a more comprehensive under-
standing of optimal product sorting and offer new insights into how sellers navigate consumer
behavior, pricing, and inventory management in increasingly complex market environments.
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ment. The total outflow of the high-quality goods now consists of consumer purchases qfσλ,
depreciation of remaining high-quality goods δqf (1 − λσ), and the shipments to the outlet
qf (1−λσ)(1−δ)

1−qfσλ
(1 − σ). Here, qf (1−λσ)(1−δ)

1−qfσλ
is the after-sales and after-depreciation proportion

of high-quality items at the flagship. Equating the total outflow to the inflow from the
production, the flagship quality qf is induced by σ and pf ∈ (vl, vh), po ≤ vl whenever:

qfσλ+ δqf (1− λσ) +
qf (1− λσ)(1− δ)

1− λqfσ
(1− σ)λ = π

[
qfσλ+ (1− σ)λ

]
Define Ψ(qf , σ):

Ψ(σ, qf ) = π(σqf + (1− σ))− qfσ − δqf (1/λ− σ)− qf (1− λσ)(1− δ)

1− qfλσ
(1− σ)

That is, qf is qf is induced by σ and pf ∈ (vl, vh), po ≤ vl when Ψ(qf , σ) = 0.

Lemma 7. There exists a decreasing function qf : [0, 1] → [0, π], such that the flagship
quality composition qf is induced by σ, pf ∈ (vl, vh), po ≤ vl if and only if qf = qf (σ).

Proof. First, let me show that for every σ, the steady-state flagship average quality is unique
and well-defined. To that end, it is sufficient to show that Ψ(·, σ) is decreasing in qf for every
σ and Ψ(·, σ) changes its sign at some interior qf .

Note that we have Ψ(0, σ) = π(1 − σ) ≥ 0, where the inequality is strict if and only if
σ < 1. On the other hand, Ψ(π, σ) is:

Ψ(π, σ) = π(1− σ)− σ(1− π)π − δπ(1/λ− σ)− (1− δ)(1− σ)
π(1− λσ)

1− πσλ

= (1− δ)π(1− σ)− δπ(1− λ)/λ− σ(1− π)π − (1− δ)(1− σ)
π(1− λσ)

1− πσλ

= (1− δ)
π(1− π)λσ(1− σ)

1− πσλ
− δπ(1− λ)/λ− σ(1− π)π

= −π(1− π)σ
λσ(1− π) + (1− λ)

1− πσλ
− δ

π(1− π)λσ(1− σ)

1− πσλ
− δπ(1− λ)/λ ≤ 0

Hence, for every σ < 1 there exist qf ∈ [0, 1], such that Ψ(qf , σ) = 0 (by the Intermediate
Value Theorem due to continuity of Ψ in qf ).

Now, let me verify that Ψ(qf , σ) is decreasing in qf :

∂Ψ(qf , σ)

∂qf
= −σ(1− π)− δ(1/λ− σ)− (1− δ)

(1− σ)(1− λσ)

(1− qfσλ)2
< 0
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Hence, an intersection with 0 is unique for every σ. I can denote such an intersection as
qf (σ). Given the two boundaries and the fact Ψ(qf , σ) is decreasing in qf , qf (σ) ∈ [0, π] for
every σ.

As qf (σ) is well defined, we can now analyze how the flagship quality composition changes
with the flagship customer share. By an Implicit Function Theorem, we have:

∂qf (σ)

∂σ
= − ∂Ψ(qf (σ), σ)/∂σ

∂Ψ(qf (σ), σ)/∂qf

Given that ∂Ψ(qf (σ), σ)/∂qf < 0, the sign of ∂qf (σ)/∂σ is determined by ∂Ψ(qf (σ), σ)/∂σ.
As qf (σ) ≤ π, to establish ∂qf (σ)

∂σ
< 0, it suffices to show that Ψ(qf , σ) is decreasing in σ for

qf ≤ π.

∂Ψ(qf , σ)

∂σ
= −π − qf (1− π − δ) + (1 + λ− 2λσ)(1− δ)

qf

1− σqfλ

− (1− δ)λ(1− σ)(1− λσ)

(
qf

1− σqfλ

)2

= −π − qf (1− π − δ) + 2(1− δ)
(1− λσ)qf

1− σqfλ
− (1− δ)

(
(1− λσ)qf

1− σqfλ

)2

− (1− δ)(1− λ)
qf

1− σqfλ
+ (1− δ)(1− λ)(1− λσ)

(
qf

1− σqfλ

)2

≤(1) −π − qf (1− π − δ) + 2(1− δ)
(1− λσ)qf

1− σqfλ
− (1− δ)

(
(1− λσ)qf

1− σqfλ

)2

≤(2) −π − qf (1− π − δ) + 2(1− δ)qf − (1− δ)
(
qf
)2 (2)

where (1) holds because

− (1− δ)(1− λ)
qf

1− σqfλ
+ (1− δ)(1− λ)(1− λσ)

(
qf

1− σqfλ

)2

= (1− δ)(1− λ)qf
(

1

1− σqfλ

)2 [
−(1− qfσλ) + qf (1− λσ)

]
≤ 0

and (2) holds because (1−λσ)qf

1−σλqf
≤ qf , and 2x− x2 increasing in x for x ≤ 1.

Now, I show that the expression (2) that bounds ∂Ψ
∂σ

is increasing in qf . Differentiating
it with respect to qf , we get:

∂
(
−π − qf (1− π − δ) + 2(1− δ)qf − (1− δ)

(
qf
)2)

∂qf
= 1− δ + π − 2(1− δ)qf
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≥ 1− δ + π − 2(1− δ)π

= (1− δ)(1− π) + πδ > 0

Hence, we can bound ∂Ψ(qf ,σ)
∂σ

by letting qf = π in the boundary of (2):

∂Ψ(qf , σ)

∂σ
≤ −π − π(1− π − δ) + 2(1− δ)π − (1− δ)π2

≤ −π − π(1− π) + 2π − π2 = 0

where the inequality of the second line is due to the fact the expression on the first line is
decreasing in δ.

Next, consider the condition for qo to be induced by σ, pf ∈ (vl, vh), po ≤ vl. At the
outlet, the outflow of high-quality items includes the purchases qo(1− σ)λ and depreciation
of the remaining high-quality stock δ(1−(1−σ)λ)qo. The inflow is given the after-sales-after-
depreciation qf (1−λσ)(1−δ)

1−qfσλ
average quality of the flagship times the total outlet sales (1− σ).

Equating the outflow of the high-quality items to their inflow at the outlet, we obtain:

qo(1− σ)λ+ δ(1− (1− σ)λ)qo =
qf (1− λσ)(1− δ)

1− qfσλ
(1− σ)λ

qo =
1− σ

1− σ + δ(1/λ− (1− σ))

qf (1− λσ)(1− δ)

1− qfσλ
(3)

As the flagship’s quality composition is unique for every σ, so is the outlet’s average quality
(whenever either the outlet has a positive consumer share σ < 1 or the depreciation rate δ is
positive). As before, at the steady state, consumers are more pessimistic about the outlet’s
quality composition relative to the flagship.

Lemma 8. At the induced steady state, the relative quality composition between the flagship
and the outlet qf/qo increases with the flagship’s customer share σ for any σ < 1.

Proof. By Equation (3) and Lemma 1, the ratio between the flagship’s and the outlet’s
quality composition for the given flagship customer share σ < 1 is:

qf (σ)

qo(σ)
=

1− qf (σ)σλ

1− σλ

(1− σ)(1− δ) + δ/λ

1− σ

1

1− δ

Differentiating the above with respect to σ, we get:

∂qf (σ)/qo(σ)

∂σ
= −∂qf (σ)

∂σ

λσ

1− λσ

(1− σ)(1− δ) + δ/λ

1− σ

1

1− δ
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+
λ(1− qf (σ))

(1− σλ)2
(1− σ)(1− δ) + δ/λ

1− σ

1

1− δ
+

1− qf (σ)σλ

1− σλ

1

(1− σ)2
δ/λ

1− δ
> 0

where the inequality follows from ∂qf (σ)
∂σ

< 0 due to Lemma 1.

As the indifference condition for the consumers remains the same in the extended model
for any prices pf ∈ (vl, vh), po = vl:

qf (σ)

qo(σ)
=

vh − vl

vh − pf

The two lemmas above imply the same equilibrium relationship as Theorem 1: The higher
the flagship price, the higher the quality composition ratio required to sustain the interior
equilibrium. Consequently, more consumers must shop at the flagship by Lemma 8 in the
interior equilibrium with a higher flagship price. By Lemma 1 and Equation (3), a higher
flagship customer share then leads to deterioration of quality at both stores. As a result, the
total per-period sales volume compresses due to the same two effects as in the benchmark
two-store model in the main text.

B Other Prices in the Two-Store Model

In this Appendix, I discuss how the predictions would change for different choices of prices
for the two stores.

Quality Composition Evolution. Let Si,ω
t denote the total sales volume of product

type ω at store i in period t. I omit the product type index to refer to the total sales volume
at a store i as Si

t . Then, generalizing the evolution of the quality composition for the two
stores, we obtain:

∆qot = qft,aS
o
t − So,h

t (4)

∆qft = π(Sf
t + So

t )− Sf,h
t − qft,aS

o
t (5)

As before, all the sales volumes are determined by the consumer behavior. Consider the
flagship store, for example. If its current quality composition is qft and it attracts a σ share
of consumers, the total number of consumers who inspect a high-quality item is λσqft . The
flagship store sells all these items if the price is no higher than the consumer value of a
high-quality item:

Sf,h
t = qft σλ1{pf ≤ vh}
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Similarly, the flagship sells to all consumers who find a low-quality product, in the mass of
(1− qft )σλ, if the price is below the low-quality product’s value vl:

Sf,l
t = (1− qft )σλ1{pf ≤ vl}

Analogously, the outlet sells a product of type ω to all consumers who draw such a product
if its value exceeds the outlet price:

So,h
t = qot (1− σ)λ1{po ≤ vh}

So,l
t = (1− qot )(1− σ)λ1{po ≤ vl}

Consumer Payoff. Consumers select their shopping strategy to maximize their expected
payoff:

V B(pf , po, σ, qf , qo) = σ[qf (vh − pf )+ + (1− qf )(vl − po)+]

+ (1− σ)[qo(vh − po)+ + (1− qo)(vl − po)+]

The shopping strategy σ and steady-state quality composition (qf , qo) form a steady-state
equilibrium in the consumers’ game given the prices pf , po, if the quality composition (qf , qo)

is induced by σ, pf , po and the shopping strategy σ is consumer-optimal given prices and the
quality composition at each store.

Let Epf ,po denote all possible equilibria in the consumers’ game given the prices pf , po.
Seller’s Problem. The seller chooses the prices and any steady-state equilibrium (σ, qf , qa) ∈
Epf ,po to maximize per-customer steady-state profit flow in both stores:

V S(pf , po, σ, qf , qo) = pfSf + poSo

Induced Steady States under Other Prices. First, note that if po ∈ (vl, vh), then in any
induced steady-state qo(1 − σ) = 0. Indeed, in this case, the outlet sells high-quality items
only. Then, from Equation (4), qo is induced by σ and pf , po if: qo(1− σ) = qfa (1− σ), which
can only be satisfied if qo(1 − σ) = 0. Hence, the outlet must offer low prices to have any
steady-state sales. It is useless to the seller otherwise.

If pf ≤ vl, then in any induced steady-state qf [σ + So] = π[σ + So]. In this case,
the flagship’s total sales is σ, and a share qf of these is of high quality. Then, the after-
sales proportion of high-quality products is the same as before consumer arrival. From
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Equation (4), we must have:

qfσ + qfSo = π[σ + So]

Hence, if pf ≤ vl, either the seller makes zero sales or the flagship store has a share π of
high-quality products. The seller can do no better than running a single outlet store at a
price vl in the baseline case for the store prices.

Hence, we may restrict attention to prices pf ∈ (vl, vh) and po ≤ vl. Now, let me verify
that po = vl is without loss for the seller. The seller’s payoff is given by:

σqfpf + (1− σ)qopo

If σ = 0, then the seller earns πpo ≤ πvl. If σ = 1, the seller makes no sales by Lemma 2,
and any such outcome is not optimal. It remains to verify that po = vl is without loss for
the potential outcomes with interior σ. In this case, the prices must satisfy the consumers’
indifference condition:

qf (vh − pf ) = qo(vh − vl) + (vl − po)

If po < vl, then the seller can increase both prices to satisfy the indifference condition for the
same qf , qo. Then, σ, qf , qo is an equilibrium given the new prices, but the seller improves
upon her profit.

C Seller’s Problem: Two-Store Model

Proof of Proposition 2. The seller’s payoff in an interior equilibrium for some flagship price
pf ∈ (vl, vh) and the outlet price po = vl is given by:

V S(pf ,σ(pf ),qf (σ(pf ))) = σ(pf )qf (σ(pf ))pf + (1− σ(pf ))vl

The interior equilibrium condition requires qf (σ(pf ))pf = qf (σ(pf ))vh−qo(σ(pf ))(vh− vl),
so that we may rewrite the seller’s problem as follows:

V S(pf ,σ(pf ),qf (σ(pf ))) = σ(pf )qf (σ(pf ))vh + (1− σ(pf ))vl − σ(pf )qo(σ(pf ))(vh − vl)
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If the seller instead only operates an outlet, she receives a payoff of vl. Hence, the seller
prefers to operate both stores with a flagship price pf whenever:

V S(pf ,σ(pf ),qf (σ(pf ))) = σ(pf )qf (σ(pf ))vh + (1− σ(pf ))vl − σ(pf )qo(σ(pf ))(vh − vl)

> vl = V S(pf , 0, π)

which holds true if and only if:

qf (σ(pf ))vh − qo(σ(pf ))vh − (1− qo(σ(pf )))vl > 0 (6)

(i) Take some price pf ∈ (vh, vl), and fix the equilibrium in the consumer’s game to be
σ = σ(pf |vh), qf = qf (σ(pf |vh)), qo = qo(σ(pf |vh)). Suppose vh increases to ṽh > vh. Adjust
the price to a new level p̃f , so that to obtain the same interior equilibrium in the consumers’
game:

ṽh − vl

ṽh − p̃f
=

qf

qo

Clearly, such a price exists with p̃f ∈ (vl, ṽh).
First, note that provided ṽh is high enough, Equation (6) (since qf > qo). In addition,

if the seller prefers to operate two stores with a flagship price pf at the high-quality item’s
value vh, she must also prefer to operate both stores with a flagship price p̃f when the value
increases to ṽh.

In addition, Equation (6) cannot be satisfied for vh = vl. The result of (i) follows.
(ii) The seller’s payoff from operating both stores is bounded above by πvh + (1 − π)vl

(strictly so whenever π is interior). If π → 0, this bound equals vl. Hence, if π ≈ 0, the seller
prefers to operate the outlet only.

As in the previous step, take some price pf ∈ (vh, vl), and fix the equilibrium in the
consumer’s game to be σ = σ(pf |π), qf = qf (σ(pf |π)|π), qo = qo(σ(pf |π)|π). Suppose the
proportion of high-quality items increases from π to π̃ > π.

I now show that σ(pf |π) > σ(pf |π̃). As the price remains the same, it must be that
in the equilibrium under the new high-quality goods share, the relative flagship’s premium
is the same. By the same proof as in Lemma 7, ∂qf (σ|π)/∂π is determined by the sign of
∂Ψ/∂π, which is positive.

Recall that:

qf

qo
=

1− qfσ

1− σ
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which is decreasing in qf and increasing in σ. Since qf (·|·) is decreasing in σ but increasing
in π, to preserve the same relative quality premium at the flagship, as π increases to π̃,
the flagship customer share must rise: σ(pf |π) > σ(pf |π̃). The net effect on qf of the two
changes (in σ and π) must be positive: qf (σ(pf |π̃)|π̃) > qf (σ(pf |π)|π), or else the relative
quality premium would strictly decrease.

As the ratio of the two qualities is the same, then the outlet’s quality also increases:
qo(σ(pf |π̃)|π̃) > qo(σ(pf |π)|π). Hence, if Equation (6) is satisfied at pf given π, then it is
also satisfied at pf given π̃:

q̃f (σ(pf ))vh − q̃o(σ(pf ))vh − (1− q̃o(σ(pf )))vl =

q̃o(σ(pf ))
(
qf/qovh − vl

)
− (1− q̃o(σ(pf )))vl

≥ qo(σ(pf ))
(
qf/qovh − vl

)
− (1− qo(σ(pf )))vl > 0

It only remains to show that the seller prefers to offer two stores when π̃ → 1.
By definition of qf , qo:

π[qf (σ(pf |π̃)|π̃)σ(pf |π̃) + 1− σ(pf |π̃)]− qo(σ(pf |π̃)|π̃)(1− σ(pf |π̃))− σ(pf |π̃)qf (σ(pf |π̃)|π̃) = 0

By our construction, we must have:

π̃(1− σ(pf |π̃)))
qo(σ(pf |π̃)|π̃)

− (1− σ(pf |π̃)))− qf

qo
σ(pf |π̃))(1− π̃) = 0

As π̃ → 1, the above implies:

lim
π̃→1

(1− σ(pf |π̃))) π̃ − qo(σ(pf |π̃)
qo(σ(pf |π̃)|π̃)

= 0

implying that either limπ̃→1 q
o(σ(pf |π̃)|π̃ = 1 or limπ̃→1 σ(p

f |π̃)) = 1. In the first case, the
left-hand side of Equation (6) converges to vh(qf/qo − 1) > 0 and we are done.

I now consider the second case. Recall that we must have:

qf

qo
=

1− qf (σ(pf |π̃)|π̃)σ(pf |π̃)
1− σ(pf |π̃)

Then, if limπ̃→1 σ(p
f |π̃)) = 1, then limπ̃→1 q

f (σ(pf |π̃)|π̃) = 1, which implies

lim
π̃→1

qo(σ(pf |π̃)|π̃ =
qo

qf
lim
π̃→1

qf (σ(pf |π̃)|π̃) = qo

qf
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In this case, Equation (6) converges to:

qo

qf

(
qf

qo
− 1

)
vh −

(
1− qo

qf

)
vl =

(
1− qo

qf

)
(vh − vl) > 0

Proof of Proposition 3. Step 1. For any flagship price pf , the flagship-seller’s payoff in-
creases in α. Hence, if the two stores are operational at α, they must also be operational
with smaller frictions of vertical integrations α̃ > α.
Step 2. The flagship-seller’s payoff has increasing differences in (α,−pf ). Indeed, let:

V S(pf ,σ(pf ),qf (σ(pf )),qo(σ(pf ))|α) = σ(pf )qf (σ(pf ))pf + αvl(1− σ(pf ))

Then, taking the mixed derivative in (pf , α), we get:

∂2V S(pf ,σ(pf ),qf (σ(pf )),qo(σ(pf ))|α)
∂α∂pf

= −vl
∂σ(pf )

∂pf
< 0

where the inequality follows from Theorem 1(i), as ∂σ(pf )
∂pf

> 0. Then, by Milgrom and
Shannon (1994), the optimal flagship price decreases in α.

D Omitted Proofs for Section 3

Lemma 9. For every admissible price schedule, p : X → R, there exists an equilibrium in
the consumers’ game 〈σ,q〉 given p, such that σ(x) > 0 only if x ∈ argmin

y∈X
p(y).

Proof of Lemma 9. Recall that admissibility requires that the price schedule p, reaches its
minimum and remains constant on some interval of size ε > 0. Suppose that (x1, x2] is such
an interval.

σ(x) =

1
ε
, if x ∈ (x1, x2]

0, else

First, note that the suggested strategy is admissible (corlol). For the steady-state quality
composition, we get two cases:
Case 1. Suppose that

¯
p > vl. Then, we can construct a buyer’s equilibrium with zero sales.

For instance, q(x) ≡ 0 for all x ∈ X. In this equilibrium, S(x) = 0, as neither location offers
goods of high quality, and the price is prohibitively high to purchase any of the low-quality
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items. The steady-state condition is satisfied since, with zero sales, as there is no movement
in stock across the locations, we can sustain any steady-state quality composition.
Case 2. Suppose that

¯
p ≤ vl. Then, q(x) ≡ π satisfies the steady-state condition.

Appendices for the Continuous Model

E General Model

In this section, I formally describe the most general version of the continuous model, which
allows buyers to have a more general shopping strategy, allows for direct disposal, and con-
siders multiple quality tiers.
Quality Tiers. Suppose there are n quality tiers for the product. I assume that vi is a
consumer’s product value i net of the seller’s production cost κ. For notational simplicity, I
assume that the consumer values (net of production costs) are ordered in decreasing order:
v1 > v2 > . . . vn. In addition, it will be useful to define a fictitious product n+1 with a value
vn+1 = −∞.
Replenishment with Direct Disposal. As in the main body of the paper, the seller
manages a continuum of shopping locations X = (0, 1) and a warehouse at location 1, which
cannot be visited by the consumers and only stores products before they are disposed of.
The products are sent away from location 1 at a constant rate γ ≥ 0.
Prices and Quality Composition. The quality composition is now described by q :

{1, . . . , n} × X → [0, 1]n, with q(i|x) denoting the proportion of product i in the stock of
location x. The quality composition at the production plant is given exogenously with some
{π(i)}ni=1, so that for every steady-state quality composition q(i|0) = π(i). I assume the
seller produces each quality i with a positive probability π(i) ∈ (0, 1). Let p : X → R
summarize the price schedule for locations in X, with p(x) being the price the seller receives
(conditional on purchase) net of her replacement cost κ > 0. I assume that p and every q(i|·)
are Lebesgue-measurable.
Consumers. Consumers who shop at location x, draw a single product at random according
to distribution {q(i|x)}ni=1. As before, I assume that when indifferent, the consumer makes
a purchasing decision about a found product in favor of the seller. The shopping strategy by
the consumers is summarized by a cdf D : [0, 1] → [0, 1]—potentially discontinuous, where
D(x) denotes the mass of consumers shopping at the locations weakly below x. Note that in
the main body of the paper, I consider a special case where D admits a density: there exists
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some integrable σ : X → R+ such that:

D(x) =

∫
y≤x

σ(y)dy

Given that D is a cdf over [0, 1], I implicitly assume that D(0) = 0, D(1) = 1, and D is
continuous on the right with a limit on the left (corlol) on [0, 1]. In addition, since I assume
that location 1 is not available for consumers, I require that D is continuous at 1. Define
δ : X → [0, 1] to be the size of an atom at location x: δ(x) = D(x)−D(x−).
Induced Steady State. A market outcome is summarized by a tuple m = 〈p, D,q, γ〉. For
every market outcome, we can define the purchasing probability per customer ρm : X → [0, 1]

for every location as ρm(x) =
∑n

i=1 1{p(x) ≤ vi}q(i|x) and the total steady-state downstream
sales in a market outcome m = 〈p, D,q, γ〉 Sm : [0, 1] → R+ now become:

Sm(x) =

∫
y>x

ρm(x)dD(x) + γ1{x < 1}

I say that (D,p, γ) induce a steady-state quality composition q on an interval [y1, y2] if
for every i and every (x1, x2] ⊂ [y1, y2]:∫

y∈(x1,x2],p(y)≤vi
q(i|y)dD(y) = Sm(x1)q(i|x1)− Sm(x2)q(i|x2)

Payoffs. The payoffs of a buyer and the seller are given respectively by:

V B(p, D,q, γ) =

∫ n∑
i=1

q(i|x)(vi − p(x))+dD(x)

V S(p, D,q, γ) =

∫
p(x)ρm(x)dD(x)− κγ

I now adapt the definitions of equilibrium in the consumer’s game and the set of market
outcomes to this generalized set-up.

Definition 2∗. Say that a shopping strategy D : [0, 1] → [0, 1] and a steady-state quality
composition across the locations q : {1, . . . , n} × [0, 1] → [0, 1]n is an equilibrium in the
consumers’ game given a price schedule p : X → R+ and disposal rate γ ≥ 0

(i) V B(p, D,q, γ) = maxx∈X
∑n

i=1 q(i|x)(vi − p(x))+dD(x)

(ii) q is induced by (D,p, γ)

Let Ep,γ denote the set of all possible equilibria in the consumers’ game given prices p and
disposal rate γ.
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In the remainder of the Appendix, I slightly abuse the notation and write 〈p, σ,q, γ〉 to
denote a market outcome where the shopping strategy of a consumer admits a density, or
write 〈p, D,q〉 to denote a market outcome where γ = 0.

F Proofs for the General Model

In this appendix, I prove the results for the General Model outlined in Appendix E.

Lemma 10. Consider a market outcome m = 〈p, D,q〉. q is induced by D, p, γ only if it
satisfies the following:

i) if Sm(x) > 0, then for every i, q(i|·) is right-continuous at x, and is continuous at x if
D is continuous at x.

ii) if p(x) ≤ vn or p(x) > v1, then q(i|·) is left-continuous at x whenever Sm(x−) > 0

iii) if p(x) > vi, then Sm(·)q(i|·) is continuous at x

iv) if p(x) < vl and D is discontinuous at x, then q(i|x) < q(i|x−) whenever q(i|x−) > 0

and ρm(x) < 1

Proof. (i) q is induced by (D,p, γ) on (x, x+∆] if:

−
∫
y∈(x,x+∆],p(y)≤vi

q(i|y)dD(y) + Sm(x)q(i|x)− Sm(x+∆)q(i|x+∆) = 0

and we can take ∆ to be arbitrarily small. Note that
∫
y∈(x,x+∆],p(y)≤vi

q(i|y)dD(y) converges
to 0 by the Squeeze Theorem:

0 = lim
∆→0

∫
y∈(x,x+∆]

1dD(y) ≥
∫
y∈(x,x+∆],p(y)≤vi

q(i|y)dD(y) ≥ 0

where the equality is due to D being right-continuous at every x ∈ X. Hence, q is induced
by D, p, γ on (x, x+∆] for any small ∆:

Sm(x)q(i|x) = lim
∆→0

Sm(x+∆)q(i|x+∆)

As Sm is right-continuous at every x, so is q(i|x) for any x, such that Sm(x) > 0. Analogously,
we can show that ifD is left-continuous at x, then q(i|x)must be left-continuous if Sm(x) > 0.
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(ii) If p(x) ≤ vn, q being induced by (D,p, γ) on (x−∆, x] for any small ∆ and for every
1 ≤ i ≤ n requires:

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) =
∫
y∈(x−∆,x],p(y)≤vi

q(i|y)dD(y)

= q(i|x) (Sm(x−∆)− Sm(x))

+

∫
y∈(x−∆,x),p(y)≤vi

(q(i|y)− q(i|x)) dD(y)

−
∫
y∈(x−∆,x),p(y)>vn

q(i|x)(1− ρm(y))dD(y)

Which we can rewrite as:

Sm(x−∆)(q(i|x−∆)− q(i|x)) =
∫
y∈(x−∆,x),p(y)≤vi

(q(i|y)− q(i|x)) dD(y)

−
∫
y∈(x−∆,x),p(y)>vn

q(i|x)(1− ρm(y))dD(y)

Note that the right-hand side is converging to 0 as ∆ → 0, as |q(i|y)−q(i|x)| and q(i|x)(1−
ρm(y)) are at most 1. Hence, we obtain that:

Sm(x−∆)(q(i|x−∆)− q(i|x)) →
∆→0

0

That is, unless Sm(x−) = 0, q(i|·) is left-continuous at x.
The proof for the case p(x) > v1 is analogous.
(iii) Suppose that p(x) > vi. Then, Sm(·)q(i|·) is continuous at x. Indeed, in this case,

we obtain:

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) =
∫
p(x)≤vi,y∈(x−∆,x)

q(i|y)dD(y) →
∆→0

0

(iv) Suppose that p(x) < vi, then q is induced over (x−∆, x] whenever:

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) =
∫
p(x)≤vi,y∈(x−∆,x)

q(i|y)dD(y)dy

= δ(x)q(i|x) +
∫
p(x)≤vi,y∈(x−∆,x)

q(i|y)dD(y)dy

Taking the limit of both sides as ∆ → 0, we obtain:

Sm(x−)q(i|x−)− Sm(x)q(i|x) = δ(x)q(i|x)
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As p(x) ≤ vi, then Sm(x−) = δ(x)ρm(x) + Sm(x) and the above implies:

δ(x)q(i|x) + Sm(x)q(i|x) ≤ q(i|x−) [q(i|x)δ(x) + Sm(x)]

q(i|x) = q(i|x−)
δ(x)ρm(x) + Sm(x)

δ(x) + Sm(x)

which is strictly lower than q(i|x−) whenever q(i|x−) > 0 and ρm(x) < 1

Lemma 11. Consider a market outcome m = 〈p, D,q〉. Suppose that p(x) ∈ (vi+1, vi)

D-a.s. on [x1, x2], Sm(x2) > 0, and either D is continuous on [x1, x2], or i = n. Then, q is
induced by (D,p, γ) over [x1, x2] if and only if:

i) for every l > i, Sm(x)q(l|x) is constant over [x1, x2]

ii) for every l ≤ i, q(l|x)∑
k≤i q(k|x)

is constant over [x1, x2]
17

Proof. q is induced by (D,p, γ) over [x1, x2] whenever for any x ∈ (x1, x2], any ∆ > 0 and
∀l ∈ {1, . . . , n}:∫

y∈(x−∆,x],p(y)≤vl
q(l|y)dD(y) = Sm(x1)q(l|x1)− Sm(x1)q(l|x1) (7)

(i) Take any quality type l > i. Then,
∫
y∈(x−∆,x],p(y)≤vl

q(l|y)dD(y) = 0, and the above
holds if and only if:

Sm(x−∆)q(l|x−∆) = Sm(x)q(l|x)

(ii) First, let me show the only if direction. Fix some product quality l ≤ i and assume by
way of contradiction that there exists some x̃1 and x̃2, such that q(l|x̃1)∑

k≤i q(k|x̃1)
> q(l|x̃2)∑

k≤i q(k|x̃2)
(the

other case is symmetric). Given the continuity of q(k|·) for every k ∈ {1, . . . , n} on [x1, x2]

by Lemma 10, there exists some ỹ1, such that for all y ∈ (ỹ1, x̃2],
q(l|ỹ1)∑

k≤i q(k|ỹ1)
> q(l|y)∑

k≤i q(k|y)
. q

is induced over (ỹ1, x̃2] by D,p, γ only if:

0 = −
∫
y∈(ỹ1,x̃2],p(y)≤vl

q(l|y)dD(y) + Sm(ỹ1)q(l|ỹ1)− Sm(x̃2)q(l|x̃2) =

= −
∫
y∈(ỹ1,x̃2],p(y)∈(vi,vi+1)

q(l|y)dD(y) + Sm(ỹ1)q(l|ỹ1)− Sm(x̃2)q(l|x̃2)

= −
∫
y∈(ỹ1,x̃2],p(y)∈(vi,vi+1)

q(l|y)∑
k≤i q(k|y)

ρm(y)dD(y) + Sm(ỹ1)
∑
k≤i

q(k|ỹ1)
q(l|ỹ1)∑
k≤i q(k|ỹ1)

17With a convention that q(j|x)∑
k≤i q(k|x)

= 1 when
∑

k≤i q(k|x) = 0.
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− Sm(x̃2)
∑
k≤i

q(k|x̃2)
q(l|x̃2)

q(k|x̃2)

>(1) − q(l|ỹ1)∑
k≤i q(k|ỹ1)

(Sm(ỹ1)− Sm(x̃2)) + Sm(ỹ1)
∑
k≤i

q(k|ỹ1)
q(l|ỹ1)∑
k≤i q(k|ỹ1)

− Sm(x̃2)
∑
k≤i

q(k|x̃2)
q(l|x̃2)

q(k|x̃2)

= − q(l|ỹ1)∑
k≤i q(k|ỹ1)

∑
k>i

q(k|ỹ1)Sm(ỹ1) +
q(l|x̃2)∑
k≤i q(k|x̃2)

∑
k>i

q(k|x̃2)Sm(x̃2)

+ Sm(x̃2)

(
q(l|ỹ1)∑
k≤i q(k|ỹ1)

− q(l|x̃2)

q(k|x̃2)

)

=(2)

(
q(l|x̃2)∑
k≤i q(k|x̃2)

− q(l|ỹ1)∑
k≤i q(k|ỹ1)

)∑
k>i

q(k|x̃2)Sm(x̃2) + Sm(x̃2)

(
q(l|ỹ1)∑
k≤i q(k|ỹ1)

− q(l|x̃2)

q(k|x̃2)

)

= Sm(x̃2)

(
1−

∑
k>i

q(k|x̃2)

)(
q(l|ỹ1)∑
k≤i q(k|ỹ1)

− q(l|x̃2)

q(k|x̃2)

)
>(3) 0

where (1) and (3) use q(l|y)∑
k≤i q(k|y)

< q(l|ỹ1)∑
k≤i q(k|ỹ1)

for all x̃2 ≥ y > ỹ1. The equality (2) follows
from using part (i), which implies

∑
k>i q(k|ỹ1)Sm(ỹ1) =

∑
k>i q(k|x̃2)Sm(x̃2). We then

obtain a contradiction.
To prove the if direction, suppose that q(l|y)∑

k≤i q(k|y)
remains constant, then Equation (7)

becomes:

0 = −
∫
y∈(x−∆,x],p(y)∈(vi,vi+1)

q(l|y)∑
k≤i q(k|y)

ρm(y)dD(y) + Sm(x−∆)q(l|x−∆)− Sm(x)q(l|x)

0 = − q(l|x)∑
k≤i q(k|x)

(Sm(x−∆)− Sm(x)) + Sm(x−∆)
∑
k≤i

q(k|x−∆)
q(l|x)∑
k≤i q(k|x)

− Sm(x)
∑
k≤i

q(k|x) q(l|x)∑
k≤i q(k|x)

0 =
q(l|y)∑
k≤i q(k|y)

[
Sm(x)

∑
k>i

q(k|x)− Sm(x−∆)
∑
k>i

q(k|x−∆)

]

where the equality is true given the premise of part (i).

Lemma 3∗. Consider any market outcome with m = 〈p, D,q, γ〉 with p ∈ A and (D,q) ∈
Ep,γ. Suppose that p(x) > vi for all x < x̂. If Sm(x̂−) = 0, then Sm(0) = 0.

Proof. Suppose Sm(x̂−) = 0 but Sm(0) > 0. Then, by Lemma 11 (i), Sm(x)q(i|x) is constant
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on (0, x̂) and is continuous at 0. Hence, we must have:

Sm(0)π(i) = Sm(x̂−)q(i|x̂−)

By assumption, π(i) ∈ (0, 1), and we obtain a contradiction.

Lemma 12. Consider a market outcome m = 〈p, D,q, γ〉 with p ∈ A and (D,q) ∈ Ep,γ
that has positive total sales: Sm(0) > 0. Suppose that p(x) > vi for all x < x̂, then∑

k≥i q(k|x̂−) < 1.

Proof. Suppose the statement is not true. First, suppose that there exists some location
x < x̂ such that

∑
k≥i q(k|x) = 1. Let

x̃ = inf{x < x̂ :
∑
k≥i

q(k|x) = 1}

Note that it must be that
∑

k≥i q(k|x) = 1 for all x ∈ [x̃, x̂). q is induced by D,p, γ only
if
∑

k≥i q(k|x)Sm(x) remains constant over [0, x̂) (by same proof as in Lemma 11 (i)). By
Lemma 3*, Sm(x̂−) > 0, hence

∑
k≥i q(k|·) is non-decreasing on [0, x̂).

Note that it must be that
∑

k≥i q(k|·) is continuous at x̃. Indeed, suppose not. By
Lemma 10 (iii), Sm(·)

∑
k≥i q(k|·) is continuous at x̃. If

∑
k≥i q(k|x) is discontinuous at x̃, it

must be
∑

k≥i q(k|x̃−) < 1. But if
∑

k≥i q(k|x̃) = 1, then there are no sales made at location
x̃ as p(x̃) > vi, and Sm(x̃−) = Sm(x̃) > 0 by Lemma 3*. Contradiction.

Using
∑

k≥i q(k|x)Sm(x) is constant over (0, x̂) again, we must have:

1∑
k≥i q(k|x̃−∆)

=
Sm(x̃−∆)

Sm(x̃)
= 1 +

∫
y∈(x̃−∆,x̃]

ρm(y)dD(y)

Sm(x̃)

≤ 1 +

∫
y∈(x̃−∆,x̃)

(1−
∑

k≥i q(k|y))dD(y)

Sm(x̃)

≤ 1 + (1−
∑
k≥i

q(k|x̃−∆))

∫
y∈(x̃−∆,x̃)

dD(y)

Sm(x̃)

where the first inequality is due to the fact quality indices above i are not purchased on
(0, x̂), and the second inequality is due to the fact

∑
k≥i q(k|·) being non-decreasing on (0, x̂).

From the above, we then obtain:

1−
∑

k≥i q(k|x̃−∆)∑
k≥i q(k|x̃−∆)

≤
(1−

∑
k≥i q(k|x̃−∆))

∫
y∈(x̃−∆,x̂)

dD(y)

Sm(x̃)

57



1∑
k≥i q(k|x̃−∆)

≤

∫
y∈(x̃−∆,x̃)

dD(y)

Sm(x̃)

where we used
∑

k≥i q(k|x̃ − ∆) < 1 for every ∆ > 0. Taking the limit as ∆ → 0, the
right-hand side is converging to 0. If the premise is true, the left-hand side must converge to
1 by continuity of

∑
k≥i q(k|x) at x̃. We get a contradiction. The proof is analogous for the

case where
∑

k≥i q(k|x) < 1 for all x < x̂ but converges to 1.

Lemma 13. Consider a market outcome p ∈ A, D,q ∈ Ep,γ with positive sales. Let x̂i =

inf{x ∈ X : p(x) ≤ vi}, with a convention that x̂i = 1 whenever p(x) > vi for all x ∈ X,
and xi = 0. Then,

(i) x̂i is increasing in i

(ii) p(x) ∈ (vi+1, vi) D-a.s. on [x̂i, x̂i+1]

(iii) if
∫
(0,x̂n)

dD(y) > 0, then
∫
p(x)≥vn

dD(y) = 1

Proof. (i) The first part is straightforward from the fact inf{x ∈ X : p(x) ≤ vi} ⊆ inf{x ∈
X : p(x) ≤ vj} for any j ≤ i.

(ii) First, note that the statement is trivially true whenever p(x) > vi on X (in this case,
x̂i = 1). Suppose now that x̂i < 1. Then, either p(x̂i) ≤ vi, or for any ∆ > 0, there exists
x ∈ (x̂, x̂+∆) such that p(x) ≤ vi.

I now establish that whenever p(x̂i) ≤ vi and
∑

k≥i q(j|x̂i) > 0, we must have p ≤ vi

D-a.s. on [x̂i, 1). Suppose the statement is false. Let x̃i denote the location where the
statement is false for “the first time”

x̃i = sup

{
y > x̂i :

∫
z∈(x̂i,y),p(z)>vi

dD(z) = 0

}
Suppose first that there is an atom at x̃i and the statement is false: δ(x̃i) > 0 and

p(x̃i) > vi. Then at x̃i, there is a downward jump in q(j|·) for all j such that vj > p(x̃i) and
q(j|x̃i−) ∈ (0, 1) (by Lemma 10 (iv)) and a downward jump in price. If ρm(x̃i) = 0, then the
consumer may receive a zero payoff at x̃i. By Lemma 12, at x̂i (or in the right-neighborhood
of x̂i by right-continuity of q by Lemma 10 (i)), a consumer may get a strictly positive
payoff; hence, we obtain a contradiction with the optimality of the consumer’s strategy.
Alternatively, if ρm(x̃i−) > 0, the consumer can achieve a strictly higher payoff at the
locations that are in the left neighborhood of x̃i. Again, we obtain a contradiction.
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Suppose now δ(x̃i) = 0. Given the definition of x̃i, for any∆ > 0,
∫
z∈([x̃i,x̃i+∆],p(z)>vi

dD(z) >

0.
Note that we can make ∆ small enough so that p(x) ∈ (vi, vi−1) D-a.s. over [x̃i, x̃i +∆].

Indeed, by Lusin’s Theorem, if p is Lebesgue-measurable, it coincides with a continuous
function except possibly for a zero-measure set. By assumption, p(x) > vi on a positive
measure of [x̃i, x̃i + ∆], then it must be that p(x) > vi a.e. on [x̃i, x̃i + ∆] for some ∆. In
addition, for small enough ∆, consumer shops with zero probability at the locations where
p(x) > vi−1 as q(i|·) is right-continuous for every i by Lemma 10 (i)

Hence, for small enough ∆, p(y) ∈ (vi, vi−1) D-a.s on [x̃i, x̃i + ∆], D is continuous
on [x̃i, x̃i + ∆] and the consumer shops with a positive probability at the locations inside
[x̃i, x̃i +∆] where he gets a playoff

n∑
k=1

q(k|x)(vk − p(x))+ <
∑
k<i

q(k|x)(vk − vi) <
∑
k<i

q(k|x̃i)(v
k − vi)

where the quality composition of q(k|x) is decreasing over [x̃i, x̃i + ∆] for every k < i by
Lemma 11. Again, we obtain a contradiction with the optimality of the consumer’s strategy.

(iii) Suppose not and let x̂n+1 = inf{x : p(x) < vn}. Suppose first that x̂n+1 = x̂n. Let
x̃h = inf{y ≤ x̂n :

∫
z ∈(y,x̂n)dD(y)=0

}. By Lemma 11, q remains constant over(x̃h, x̂n+1] for
every i. There can be no atom at x̃h, as at x̃h, consumer’s payoff is lower than that at x̂n:

n∑
k=1

q(k|x̃h)(vk − p(x̃h))+ <
n∑

k=1

q(k|x̃h)(vk − p(x̂n)) =
n∑

k=1

q(k|x̂n)(v
k − p(x̂n))

where by the definition of x̂n: p(x̃h) ≥ vn > p(x̂n+1) = p(x̂n).
Since there is no atom at x̃h, Lemma 10 delivers q(i|·) is continuous at x̃h for every i.

But then, the consumer must shop with zero probability in a left neighborhood of x̃h, as
all these locations hold only marginally different quality composition but a discretely higher
price compared to x̂n+1. But this is only possible if x̃h = 0, which contradicts our assumption∫
(0,x̂n)

dD(y) > 0.
Suppose now x̂n+1 > x̂n. If Sm(x̂n+1−) = 0, the statement would be true. Conversely,

suppose Sm(x̂n+1−) > 0. Then, by Lemma 11 (ii), q(i|x̂n+1−) = q(i|x̂n) for every i. Again,
we obtain a contradiction since either q remains constant over (x̃h, x̂n+1), and the consumers
suboptimally shop at high-priced locations; or consumers suboptimally shop at some outlet
locations in (x̂n, x̂n+1) by paying a higher price for the same quality composition as in x̂n+1.
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G Proofs for the Binary Quality

In this section, I provide the results for a special case of a general model (see Appendix E)
with a binary quality type.

Proof of Lemma 2. Follows from a more general Lemma 11.

Lemma 14. Consider a market outcome p ∈ A, (D,q) ∈ Ep,γ with positive sales and the
earliest outlet location x̂ (x̂ = 1 if p(x) > vl on X). Then, the total surplus is given by:

TS(p, D,q, γ) = (Do + γ)(1− q(x̂−))

(
π

1− π
vh + vl

)
− γq(x̂−)(vh − vl)− γ(κ+ vl)

where Do is the mass of outlet shoppers:
∫
p(x)≤vl

dD(x) = Do.

Proof. By Lemma 13 (ii), all locations [x̂, 1) are outlet-locations D-a.s.. By Lemma 11 (ii),
the quality composition remains constant over [x̂, 1) and coincides with q(x̂−) D-a.s. (if
x̂ < 1, and q is continuous at x̂ by Lemma 10). Then, the total surplus is given by:

TS(p, D,q, γ) =

∫ x̂

0

vhq(x)dD(x) +Do(q(x̂−)vh + (1− q(x̂−))vl)− γκ

= vh (Sm(0)− Sm(x̂−)) +Do(q(x̂−)vh + (1− q(x̂−))vl)− γκ

Recall that Sm(x)(1−q(x)) is constant on (0, x̂) by Lemma 11 (i), and Sm(x̂−) = Do+γ.
Hence, we obtain:

TS(p, D,q, γ) = (Do + γ)vh
(
1− q(x̂−)

1− π
− 1

)
+Do(q(x̂−)vh + (1− q(x̂))vl)− γκ

= (Do + γ)(1− q(x̂−))

(
π

1− π
vh + vl

)
− γq(x̂−)(vh − vl)− γ(κ+ vl)

Proof of Lemma 4. Follows from a more general Lemma 13.

Consider some market outcome p ∈ A, D,q ∈ Ep,γ. Define x̂ = inf{x : p(x) ≤ vl}. By
Lemma 13, consumers only shop at outlet locations on [x̂, 1). Lemma 15 summarizes the
bounds of screening for every possible mass of outlet shoppers: Do =

∫ 1

x̂
dD(y).

Proof of Lemma 5. By Lemma 11, q is induced by p, σ on [0, x̂] if and only if Sm(x)(1 −
q(x)) remains constant over [0, x̂]. If D admits a density, then Sm is differentiable almost
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everywhere on X. In particular, for almost every x ∈ [0, x̂]:

S ′
m(x) = −σ(x)q(x)

Hence, q is also amost everywhere differentiable on [0, x̂], with a derivative:

q′(x) = −q(x)(1− q(x))
σ(x)

Sm(x)

= −q(x)(1− q(x))2
σ(x)

Sm(x̂)(1− q(x̂))

Then, from the above, we can solve out for the cumulative number of shoppers at all locations
below x for any x < x̂ such that q(x) > 0—which holds everywhere on [0, x̂] by Lemma 12.
We obtain that∫ x

0
σ(y)dy

Sm(x̂)(1− q(x̂))
=

∫ x

0

− q′(y)

q(y)(1− q(y))2
dx

=

∫ π

q(x)

1

q(1− q)2
dq = ln

(
π

1− π

1− q(x)

q(x)

)
+

π

1− π
− q(x)

1− q(x)

Rearranging, we get:

q(x)

1− q(x)
+ ln

(
q(x)

1− q(x)

)
= ln

(
π

1− π

)
+

π

1− π
−

∫ x

0
σ(y)dy

Sm(x̂)(1− q(x̂))

q(x)

1− q(x)
exp

[
q(x)

1− q(x)

]
=

π

1− π
exp

[
π

1− π
−

∫ x

0
σ(y)dy

Sm(x̂)(1− q(x̂))

]
q(x)

1− q(x)
= W

(
π

1− π
exp

[
π

1− π
−

∫ x

0
σ(y)dy

Sm(x̂)(1− q(x̂))

])
In particular, the above is true at q(x̂) whenever:

ln

(
π

1− π

1− q(x̂)

q(x̂)

)
=

1

(1− q(x̂))Sm(x̂)
− 1

1− π

If x̂ is an outlet threshold, then Sm(x̂) =
∫ 1

x̂
σ(y)dy, as all locations in [x̂, 1) are outlet

σ-a.s., delivering Equation (Q-T).

Proof of Proposition 4. Take any q. I now construct a x̂-threshold market outcome p ∈
A, (q, σ) = Ep with q(x̂) = q. Take σ(x) = 1,∀x ∈ X.
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Let x̂ be as suggested by Equation (Q-T):

(1− q)

(
ln

(
π

1− π

1− q

q

)
+

1

1− π

)
=

1

1− x̂

Note that for any q ∈ (0, π], x̂ ∈ [0, 1). We let the prices be low for all locations in [x̂, 1]:
p(x) = vl,∀x ≥ x̂. Define the quality composition to be q(x) = q, ∀x ≥ x̂. By Lemma 2, q
is induced by (σ,p) on [x̂, 1].

For earlier locations, define q so that:

q(x)

1− q(x)
= W

(
π

1− π
exp

[
π

1− π
− x

(1− x̂)q

])
for all x ∈ [0, x̂]. By Lemma 5, q is induced by (σ,p) on [0, x̂]. Then, q is induced by (σ,p).

Finally, complete the construction by letting p(x) = vh− q
q(x)

(vh− vl), ∀x ∈ [0, x̂). Then,
consumers are indifferent between all locations, and σ is optimal given (p,q). In addition,
p ∈ A whenever x̂ < 1.

Lemma 15. Consider a market outcome p ∈ A, D,q ∈ Ep,γ with positive sales. Then, the
quality composition at the earliest outlet location qo and the mass of buyers shopping at outlet
locations Do =

∫ 1

x̂
dD(y) satisfy the following. For every Do ≤ 1 and Do+γ > 0, qo ∈ [

¯
qo, q̄o],

with:

1 + γ = (Do + γ)(1−
¯
qo)

[
ln

(
π

1− π

1−
¯
qo

¯
qo

)
+

1

1− π

]
q̄o = π

Do + γ

Do + γ + (1−Do)(1− π)

In addition:

i) If under D, the mass of shoppers at outlet locations is Do, and D admits no atoms at
non-outlet locations, then the quality composition at (almost all) outlet locations is

¯
qo.

ii) If there exists a unique non-outlet location that attracts a mass 1−Do of consumers, the
quality composition at (almost all) outlet locations is q̄o.

iii) If there are finitely many non-outlet locations, where D is discontinuous, then qo >
¯
qo.

Proof. Step 1. First, note that the statement is true for Do = 1, since all consumers shop
at the outlet locations. The steady-state condition requires the quality composition to be
constant across the locations, with q̃(x) = π. The above is satisfied.
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Step 2.1. Now suppose that −γ < Do < 1. Then, by Lemma 4, p(x) = vl D-a.s. on
[x̂, 1], that is for every x ∈ [x̂, 1], Sm(x) = 1−D(x) + γ. By Lemma 3*, Sm(x̂) > 0 whenever
the market outcome m = 〈p, D,q, γ〉 admits positive sales.

By Lemma 11 q is induced over [x̂, 1] by (D,p, γ) if and only if it remains constant over
[x̂, 1] for almost all such locations (except possibly for the location at the right boundary of
the support of the consumer’s strategy). By continuity of q at x̂ due to Lemma 10, q(x̂) = qo.

Then, by Lemma 5 q is induced by (D,p, γ) over [0, x̂] if and only if:

qo

1− qo
= W

(
π

1− π
exp

[
π

1− π
− D(x̂)

(1− qo)Sm(x̂)

])
As all locations below x̂ are outlet locations almost surely, then Sm(x̂) =

∫ 1

x̂
dD(y) + γ.

Rewriting the above equation, we obtain:

1 + γ = (Do + γ)(1− qo)

[
ln

(
π

1− π

1− qo

qo

)
+

1

1− π

]
Note that every shopping strategy that is absolutely continuous on an interval containing

all non-outlet locations induces the same outlet quality composition
¯
qo for a given mass of

outlet shoppers Do.
Step 2.2. I show that for any two market outcomes with the same prices p, shopping

strategy D, and disposal rate γ, the outlet quality composition qo is unique.
Suppose not and there exist m = 〈p, D,q, γ〉 and m̃ = 〈p, D, q̃, γ〉 with p ∈ A and

(D,q), (D, q̃) ∈ Ep,γ, such that q̃(x̂) = q̃o < qo = q(x̂) (the other case is symmetric).
By Lemma 10, q is continuous at x̂. Hence, there exists a left neighborhood of x̂, such

that q(·) > q̃(·) for all stores within such neighborhood. Let x1 = inf{x < x̂ : q(x) > q̃(x)}.
Note that in this case, it must be that at x1, the total sales volume is higher in the first
market outcome than in the second one due to its superior quality composition on [x1, x̂]:

Sm̃(x1) = Do + γ +

∫ x̂

x1

q̃(x)dD(x) < Do + γ +

∫ x̂

x1

q(x)dD(x) = Sm(x1)

By Lemma 11, q and q̃ being induced by (D,p, γ) requires:

(1− q̃(x1)) = (1− q̃o)
Do + γ

Sm̃(x1)
> (1− qo)

Do + γ

Sm(x1)
= (1− q(x1))

Hence, q̃(x1) < q(x1). In addition, by the same reasoning q̃(x1−) < q(x1−). Then, it must
be that x1 = 0 (or else x1 is not correctly defined) and π = q(0) > q̃(0) = π, we obtain a
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contradiction.
Step 2.3. Whenever D is continuous, we can approximate it with some sequence of

absolutely continuous Dn. For these, we know how to construct an induced steady-state
from the previous step. I now go over this formally. I will show that if D is continuous on
[x1, x2], then:

q(x2)

1− q(x2)
= W

(
q(x1)

1− q(x1)
exp

[
q(x1)

1− q(x1)
− D(x1)−D(x2)

(Do + γ)(1− qo)

])
Consider a sequence of shopping strategies such that Dn admits a density almost every-

where on [x1, x2] (for instance, take Dn to be piece-wise uniform) that pointwise converges
to D(x) on [x1, x2].

Construct qn(x) so that (Sm(x1)−
∫ x

x1
qn(x)dDn(y))(1−qn(x)) remains constant on [x1, x2]

and equals (1− qo)(Do + γ). For each Dn, qn(x) is itself absolutely continuous and is given
by:

qn(x)

1− qn(x)
= W

(
q(x1)

1− q(x1)
exp

[
q(x1)

1− q(x1)
− Dn(x)−Dn(x2)

(Do + γ)(1− qo)

])
In addition, since Dn converges to D on [x1, x2], then qn(x) converges (pointwisely) to q̃

with:

q̃(x)

1− q̃(x)
= W

(
q(x1)

1− q(x1)
exp

[
q(x1)

1− q(x1)
− D(x)−D(x2)

(Do + γ)(1− qo)

])
I now show that (1 − q̃(x))(Sm(x1) −

∫ x

x1
q̃(y)dD(y)) remains constant over [x1, x2] and

equals (1− qo)(Do + γ). By construction, we have:(
Sm(x1)−

∫ x

x1

qn(y)dDn(y)

)
(1− qn(x)) = (1− qo)(Do + γ)

Hence, to establish the result, it suffices to show that
(
Sm(x1)−

∫ x

x1
qn(y)dDn(y)

)
(1 −

qn(x)) converges to (1− q̃(x))(Sm(x1)−
∫ x

x1
q̃(y)dD(y)) for every x. Since [x1, x2] is compact,

D is uniformly continuous on [x1, x2] by Heine–Cantor theorem. Hence, Dn converges to D

uniformly. Since q(x1) is bounded by π, and Do+γ > 0 in any market outcome with positive
sales, the argument inside W is bounded. Then, W is uniformly continuous on [0, K] for
some K large enough and qn(x) converges uniformly to q̃.
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It remains to verify that
∫ x

x1
qn(y)dDn(y) converges to

∫ x

x1
q̃(y)dD(y) for every x:∫ x

x1

qn(y)dDn(y) =

∫ x

x1

q̃(y)dDn(y) +

∫ x

x1

qn(y)− q̃(y)dDn(y)

by Portmanteau theorem,
∫ x

x1
q̃(y)dDn(y) converges

∫ x

x1
q̃(y)dD(y), as q̃ is continuous on

[x1, x2]. Hence, it now only remains to show that
∫ x

x1
qn(y)− q̃(y)dDn(y) converges to 0. As

qn(y) converges to q̃(y) uniformly, then for any ε > 0 for sufficiently large n:

ε ≥ ε

∫ x

x1

dDn(y) ≥
∫ x

x1

qn(y)− q̃(y)dDn(y) ≥ −ε

∫ x

x1

dDn(y) ≥ −ε

Taking ε → 0, we get the desired convergence.
Suppose now that q(x2) > q̃(x2) (the other case is symmetric). We can obtain contradic-

tion in a similar fashion as in the previous step. Since q is continuous on [x1, x2] by Lemma 10,
and q̃ is continuous by construction, there exists x̃ ∈ [x1, x2) such that q(x̃) = q̃(x̃) but
q(x) > q̃(x) for all x ∈ (x̃, x2]. Then, as q is induced by (D, γ,p), and by construction of
q̃(x) we must have: Sm(x̃) = Sm(x1)−

∫ x

x1
q̃(x)dD(y). Moreover, from Lemma 2 (i):

1− q(x2) =
(Do + γ)(1− qo)

Sm(x2)
= (1− q(x̃))

Sm(x̃)

Sm(x2)
= (1− q(x̃))

Sm(x̃)

Sm(x̃)−
∫ x2

x̃
q(x)dD(x)

>
Sm(x̃)

Sm(x̃)−
∫ x2

x̃
q̃(x)dD(x)

= 1− q̃(x2)

which contradicts the premise of q(x2) > q̃(x2).
Consequently, if D has no atoms on (0, x̂), then q(x̂−) =

¯
qo. By Lemma 10, q is contin-

uous at x̂, and q(x̂) =
¯
qo.

Step 3. Finally, let me show that the quality composition is within the suggested bound-
aries for every shopping strategy D. Note that if at x̃ ∈ X D admits an atom, then using
Lemma 10 (iii):

q(x̃−)− q(x̃)

(1− q(x̃−))
=

δ(x̃)q(x̃)

Sm(x̃)

q(x̃−)− q(x̃)

(1− q(x̃−))q(x̃)
=

δ(x̃)

Sm(x̃)
(8)

First, suppose the seller has a unique non-outlet location x̃ ∈ (0, x̂). Then, δ(x̃) = 1−Do.
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The steady-state condition requires:

(1− q(0))Sm(0) = (1− q(x̃))Sm(x̃)

(1− π) (q(x̃)(1−Do) +Do + γ) = (1− q(x̃))(Do + γ)

Solving out for q(x̃), we get:

q(x̃) = π
Do + γ

Do + γ + (1−Do)(1− π)

Since all locations on (x̃, 1] are D-a.s. outlet locations, we get that qo = q(x̃), and qo achieves
the upper bound from the formulation of the lemma.

Now, consider any shopping strategy D. Then, for every two non-outlet locations x1, x2 <

x̂:

q(x1)− q(x2)

(1− q(x1))
=

∫
y∈(x1,x2]

q(y)dD(y)

Sm(x2)
≥ q(x2) (D(x2)−D(x1))

Sm(x2)

In particular, taking x1 = 0 and x2 → x̂−, we obtain:

π − q(x̂−)

1− π
≥ q(x̂−)(1−Do)

Do + γ

q(x̂−) ≤ π
Do + γ

Do + γ + (1− π)(1−Do)

Since q is continuous at x̂, we get that qo = q(x̂) = q(x̂−) is at most q̄o.
By the previous step, wheneverD is continuous on an interval [x1, x2), steady-state quality

composition q satisfies:

ln

(
q(x1)

1− q(x1)

1− q(x2−)

q(x2−)

)
+

1

1− q(x1)
− 1

1− q(x2−)
=

D(x2−)−D(x1)

(Do + γ)(1− qo)

if there is a jump at x2, then by Equation (8) and (Do + γ)(1− qo) = Sm(x2)(1− q(x2)) by
Lemma 11, we get that the overall change over an interval [x1, x2] is:

ln

(
q(x1)

1− q(x1)

1− q(x2−)

q(x2−)

)
+

1

1− q(x1)
− 1

1− q(x2−)

+
q(x2−)− q(x2)

(1− q(x2−))q(x2)

1

1− q(x2)
=

D(x2)−D(x1)

(Do + γ)(1− qo)
(9)

Since ln is (strictly) concave, it satisfies for any y > 0: ln(y) ≤ y− 1, with a strict inequality

66



for any y 6= 1. In particular, we obtain the following bound:

ln

(
q(x2−)

1− q(x2−)

1− q(x2)

q(x2)

)
≤ q(x2−)

1− q(x2−)

1− q(x2)

q(x2)
− 1

⇒ ln

(
q(x2−)

1− q(x2−)

1− q(x2)

q(x2)

)
+

1

1− q(x2−)
− 1

1− q(x2)

≤ q(x2−)

1− q(x2−)

1− q(x2)

q(x2)
− 1 +

1

1− q(x2−)
− 1

1− q(x2)

=
q(x2−)− q(x2)

(1− q(x2−))q(x2)

1

1− q(x2)

Plugging this back into Equation (9), we obtain that over [x1, x2], the change in q is given
by at most:

ln

(
q(x1)

1− q(x1)

1− q(x2)

q(x2)

)
+

1

1− q(x1)
− 1

1− q(x2)
≤ D(x2)−D(x1)

(Do + γ)(1− qo)

In addition, the inequality is strict if there is a discontinuity of D at x2. Since the above is
true for every interval, it must be that:

ln

(
π

1− π

1− qo

qo

)
+

1

1− π
− 1

1− qo
≤ 1−Do

(Do + γ)(1− qo)

and qo is at at least
¯
qo.

For finitely many discontinuities, we can find {x1, . . . , xn} of non-outlet locations, such
that D is discontinuous at xi. Summing over [0, x1], . . . [xi, xi+1], [xn, x̂], we obtain:

ln

(
π

1− π

1− qo

qo

)
+

1

1− π
− 1

1− qo
<

1−Do

(Do + γ)(1− qo)

Part (iii) follows.

H Omitted Proofs for Section 3.2

In this appendix, I analyze the properties of the seller’s payoff as a function of the outlet
quality composition Ṽ S.

Lemma 16. Ṽ S(·) has the following properties:

i) Ṽ S(π) = vl

ii) ∂Ṽ S

∂q
(π) > 0
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iii) lim
q→0

Ṽ S(q) = 0, lim
q→0

∂Ṽ S(q)
∂q

= ∞

iv) Ṽ S is concave-convex: that is, there exists q̄(π) ∈ (0, π/2), such that Ṽ S is convex on
(q̄(π), π] and is concave on [0, q̄(π))

Proof.

∂Ṽ S

∂q
=

(
π

1− π
vh + vl

)
/

(
ln

(
π

1− π

1− q

q

)
+

1

1− π

)2
1

(1− q)q
− (vh − vl)

i) Is straightforward from plugging in q = π.

ii) Consider ∂Ṽ S

∂q
(π):

∂Ṽ S

∂q
(π) =

(
π

1− π
vh + vl

)
1− π

π
− (vh − vl) =

vl

π
> 0

iii)

lim
q→0

Ṽ S ∝ lim
q→0

1

ln
(

π
1−π

1−q
q

)
(1− π) + 1

= 0

lim
q→0

∂Ṽ S(q)

∂q
∝ lim

q→0

1/[(1− q)q](
ln
(

π
1−π

1−q
q

)
+ 1

1−π

)2
Applying L’Hôpital’s rule twice, we can compute the above limit as:

lim
q→0

1/[(1− q)q](
ln
(

π
1−π

1−q
q

)
+ 1

1−π

)2 = lim
q→0

2
(1− 2q)/[(1− q)q](
ln
(

π
1−π

1−q
q

)
+ 1

1−π

) = lim
q→0

2
−1 + 2q − 2q2

(1− q)q
= ∞

iv)

∂2Ṽ S

∂q2
/

(
π

1− π
vh + vl

)
=(

ln

(
π

1− π

1− q

q

)
+

1

1− π

)−3

((1− q)q)−2

(
2− (1− 2q)

(
ln

(
π

1− π

1− q

q

)
+

1

1− π

))
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Whenever q ≥ min{1/2, π}, the above is positive. For q < 1/2, the expression in
parentheses increases with q, and is negative at q → 0. Hence, it must be that there is a
unique threshold q̄(π) ∈ (0,min{π, 0.5}), such that the second derivative is positive for
q > q̄(π) but is negative for q < q̄(π). In addition,

2 = (1− 2q̄(π))

(
ln

(
π

1− π

1− q̄(π)

q̄(π)

)
+

1

1− π

)
≤ (1− 2q̄(π))

π

1− π

1

q̄(π)

q̄(π) ≤ 0.5π

where I used again the boundary on ln(y) ≤ y − 1 for all y > 0.

With some abuse of notation, let Ṽ S : (0, 1]× [0, 1]× R++ × R++ → R denote:

Ṽ S(q, π, vh, vl) =
(
πvh + (1− π)vl

)
/

(
ln

(
π

1− π

1− q

q

)
(1− π) + 1

)
− q(vh − vl)

Proof of ??. Since Ṽ S(·, π, vh) is concave-convex by Lemma 16, at most, two points satisfy
FOC in q for every π, vh, and the only solution candidate is the minimum of such points
(as, otherwise, the solution candidate fails to satisfy SOC). Moreover, Ṽ S(q, π, vh, vl) ≤
Ṽ S(π, π, vh, vl) for all q ∈ [q̄(π), π], as Ṽ S is convex in q on this interval.

The interior solution candidate qoa : [0, 1]× R++ → [0, 1] can be implicitly defined as :

qoa(π, v
h, vl) = min

{
q ∈ [0, π] :

∂Ṽ S(q, π, vh, vl)

∂q
= 0

}

with a convention that q∗a(π, vh, vl) = π if the set min
{
q ∈ [0, π] : ∂Ṽ S(q,π,vh,vl)

∂q
= 0
}
is empty.

By Lemma 16, ∂Ṽ S(q,π,vh,vl)
∂q

is positive both at q = π and as q → 0. If q∗a(π, vh, vl) = π, then
∂Ṽ S(q,π,vh,vl)

∂q
≥ 0 for all q, and Ṽ S(·, π, vh, vl) ≤ Ṽ S(π, π, vh, vl).

If q∗a(π, vh, vl) 6= π, then Ṽ S(q, π, vh, vl) ≤ Ṽ S(q∗a(π, v
h, vl), π, vh, vl) for all q ∈ (0, q̄(π)],

as Ṽ S is concave in q on this interval. The result follows.

Proposition 9. There exist π̄(vh, vl) and v̄h(π, vl), such that Ṽ S attains (does not attain)
its maximum at q = π if either π < π̄(vh, vl) or vh < v̄h(π, vl).

Proof. Step 1. First, I establish that the seller engages in no screening at π → 0 or vh → vl;
but engages in active screening for π → 1 or vh → ∞.
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Note that we have boundary on Ṽ S(·, π, vh, vl):

Ṽ S(q, π, vh, vl) ≤ πvh + (1− π)vl − q(vh − vl)

with a strict inequality for any market outcome with positive screening q < π (due to positive
screening distortion). As π → 0 or vh → vl, the boundary converges to vl for every feasible
q, and the seller strictly prefers to do no screening.

π → 1: Suppose the seller induces qo = 1−π
π

which is feasible for sufficiently large π. In
addition, 1−π

π
< q̄(π) for large enough π. Hence, as π → 1, we obtain the following boundary

on the seller’s payoff from an interior solution:

Ṽ S
(
qoa(π, v

h, vl), π, vh, vl
)
≥ Ṽ S

(
1− π

π
, π, vh

)
=
(
πvh + (1− π)vl

)
/

(
2 ln

(
π

1− π

)
(1− π) + 1

)
− 1− π

π
(vh − vl) →

π→1
vh > vl

vh → ∞: Similarly, fix any q < q̄(π). Then, the seller’s payoff from the interior solution
is at least:

Ṽ S
(
qoa(π, v

h, vl), π, vh, vl
)
≥ Ṽ S(q, π, vh)

= (vh − vl)

[
π

1−π
vh + vl

vh − vl
/

(
ln

(
π

1− π

1− q

q

)
+

1

1− π

)
− q

]
→

vh→∞
∞

To verify this, it is enough to establish that the expression under the square brackets
is bounded by some positive constant for every vh. Indeed, note first that for any for any
vh > vl > 0:

π
1−π

vh + vl

vh − vl
>

π

1− π

Bounding ln(·) by ln(y) < y − 1 for every y > 1:

π
1−π

vh + vl

vh − vl
/

(
ln

(
π

1− π

1− q

q

)
+

1

1− π

)
− q >

π

1− π

1
π

1−π
1−q
q

+ π
1−π

− q = 0

Hence, some positive constant c > 0 exists, such that the squared expression is strictly above
c for every vh. This completes Step 1.

Step 2. Now, I show that switching between the two solution types can only happen
once. Let

π̄(vh, vl) = inf
π≥π̂(vh,vl)

{
Ṽ S(qoa(π, v

h, vl), π, vh, vl) > vl
}
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To avoid notational complications, when analyzing comparative statics with respect to π,
I drop vh and vl as arguments for π̄, qoa or Ṽ S.

Note that it must be that qoa(π̄) 6= π̄ and dṼ S

dπ
(qoa(π̄), π̄) > 0, as otherwise there can be no

switch at π̄ between the two solutions. I establish now that for any π > π̄, dṼ S

dπ
(qoa(π), π) > 0.

Given qoa(π, v
h, vl) satisfies FOC with respect to q:

dṼ S

dπ
(qoa(π), π) =

∂Ṽ S

∂π
(qoa(π), π)

=
1

(1− π)2
vh

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

−
π

1−π
vh + vl(

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

)2 1

π(1− π)2

Hence, the sign of dṼ S

dπ
(qoa(π), π) coincides with the sign of:

F (π) ≡ πvh −
π

1−π
vh + vl

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

dF

dπ
= vh − 1

(1− π)2
vh

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

+
π

1−π
vh + vl(

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

)2 ( 1

π(1− π)2
− 1

qoa(π)(1− qoa(π))

dqoa
dπ

)

= vh − F (π)
1

(1− π)2
1

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

−
π

1−π
vh + vl(

ln
(

π
1−π

1−qoa(π)
qoa(π)

)
+ 1

1−π

)2 1

qoa(π)(1− qoa(π))

∂qoa
∂π

Since Ṽ S is concave in qo at qoa(π), the sign of ∂qoa
∂π

is determined by the sign of ∂2Ṽ S

∂π∂qo
(qoa(π), π).

Suppose the premise is wrong, then there exists some π̃ > π̄, such that F (π̃) = 0 and
dF
dπ
(π̃) < 0. However, ∂2Ṽ S

∂qo∂π
< 0 whenever F (π̃) ≤ 0. Then, ∂qoa

∂π
(π̃) < 0 and hence dF

dπ
(π̃) > 0.

We get a contradiction. Then, the payoff from the interior solution is increasing in π for all
π ≥ π̄(vh, vl), hence for all such π, the seller strictly prefers the interior solution.

Now, let me do a similar exercise for vh (now, I drop π and vl as the arguments of the
analyzed functions). Suppose the seller strictly prefers the interior solution at some vh, then:

dṼ S

dvh
(qoa(v

h), vh) =
∂Ṽ S

∂vh
(qoa(v

h), vh) =

π

1− π
/

(
ln

(
π

1− π

1− qoa(v
h)

qoa(v
h)

)
+

1

1− π

)
− qoa(v

h) > 0
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where the inequality is again obtained by bounding ln(y) ≤ y− 1 . Hence, the seller’s payoff
from an interior solution is increasing in vh.Then, if the seller prefers the interior solution at
ṽh, she strictly prefers an interior solution for all higher vh.

Proof of Proposition 5. I now derive the comparative statics of qoa with respect to π and vh.
Step 1: comparative statics of qoa with respect to π. I now derive the comparative statics
of qoa with respect to π and vh. When qoa(π, v

h, vl) 6= π is an optimum, the sign of ∂qoa
∂π

is
determined by the sign of

πvh − 2
π

1−π
vh + vl

ln
(

π
1−π

1−qoa(v
h)

qoa(v
h)

)
+ 1

1−π

→
π→1

vh − 2vh < 0

where I used Step 1 in Proposition 9, where we verified the seller’s payoff at an interior
solution converges to vh as π → 1.
Step 2: comparative statics of qoa with respect to vh. At the interior candidate solution
(when it is optimal), the sign of ∂qoa

∂vh
is given by ∂2Ṽ S

∂qo∂vh
evaluated at qoa(vh):

∂2Ṽ S

∂qo∂vh
=

π

1− π
/

(
ln

(
π

1− π

1− qoa(v
h)

qoa(v
h)

)
+

1

1− π

)2
1

(1− qoa(v
h))qoa(v

h)
− 1 =

π

1− π
(vh − vl)/

(
π

1− π
vh + vl

)
− 1 < 0

Step 3: comparative statics of p(x) in the optimal uniform-threshold market outcome with
respect to vh.

With some abuse of notation, let p : X ×R → R, and q : [0, 1)×R → R denote the price
schedule and quality composition for every store location given the value of a high-quality
product in an optimal market outcome from by Theorem 2. Similarly, x̂ : R → (0, 1) stands
for an optimal earliest outlet location for every given vh. To show that the price increases in
every store location, recall that for all non-outlet locations, the price schedule satisfies:

p(x, vh) = vh − qoa(v
h)

q(x, vh)
(vh − vl)

⇒ ∂p(x, vh)

∂vh
= 1− qoa(v

h)

q(x, vh)
− (vh − vl)

∂

∂vh

(
qoa(v

h)

q(x, vh)

)
,∀x < x̂(vh)

Since qoa(v
h) ≤ q(x, vh),∀x ∈ X, to verify p(x, vh) increases with vh, it is sufficient to

check if ∂
∂vh

(
q(x,vh)
qoa(v

h)

)
≥ 0.
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Define r(x, vh) ≡ q(x,vh)
qoa(v

h)
. Given the steady-state condition on q(·, ·):

∂2r(x, vh)

∂x∂vh
=

∂

∂vh

(
− q(x, vh)(1− q(x, vh))2

qoa(v
h)(1− qoa(v

h))(1− x̂(vh))

)
=

∂

∂vh

(
−r(x, vh)

(1− qoa(v
h)r(x, vh))2

(1− qoa(v
h))(1− x̂(vh))

)
= −

(
1− qoa(v

h)r(x, vh)
) [

1− 2qoa(v
h)r(x, vh)

]
(1− qoa(v

h))(1− x̂(vh))

∂r(x, vh)

∂vh
+

2r(x, vh)
(
1− qoa(v

h)r(x, vh)
)

(1− qoa(v
h))(1− x̂(vh))

∂qoa(v
h)

∂vh

+r(x, vh)
(1− qoa(v

h)r(x, vh))2

(1− qoa(v
h))2(1− x̂(vh))2

∂
(
(1− qoa(v

h))(1− x̂(vh))
)

∂vh

(10)

As shown above, ∂qoa(v
h)

∂vh
< 0. In addition, x̂(vh) and qoa(v

h) satisfy:

ln

(
π

1− π

1− qoa(v
h)

qoa(v
h)

)
+

1

1− π
=

1

(1− qoa(v
h))(1− x̂(vh))

Hence, if ∂qoa(v
h)

∂vh
< 0, then ∂

(
(1−qoa(v

h))(1−x̂(vh))
)

∂vh
< 0 and ∂x̂(vh)

∂vh
> 0. Since the earliest outlet

locations shifts to the right, r(x̂(vh), vh + ε) > 1 = r(x̂(vh), vh). That is:

∂r

∂vh
(x̂(vh), vh) > 0

Hence, ∂r
∂vh

has the desired sign at least in the left neighborhood of x̂(vh). Note that ∂r
∂vh

can
never cross 0, since otherwise there exists x̃, such that ∂r

∂vh
(x̃, vh) = 0, and is positive in the

right neighborhood of x̃. However, this is not possible by Equation (10), as ∂r
∂vh∂x

(x̃, vh) < 0.
This completes the proof.

I Omitted proofs for Section 4.1

Proof of Proposition 6. Consider a market outcome p ∈ A, D,q ∈ Ep,γ with the earliest
outlet location x̂l. Let qo = q(x̂l). By Lemma 15, given γ, the highest measure of outlet
shoppers D̄o that could still induce qo is given by:[

ln

(
π

1− π

1− qo

qo

)
+

1

1− π

]
=

1 + γ

(D̄o + γ)(1− qo)

By Lemma 14, the total surplus at the market outcome with positive sales is given by:

TS(p, D,q, γ) = (Do + γ)(1− qo)

(
π

1− π
vh + vl

)
− γqo(vh − vl)− γ(κ+ vl)
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Given the bound on Do ≤ D̄o, the above is at most:

TS(p, D,q, γ) ≤
(

π

1− π
vh + vl

)
1 + γ

ln
(

π
1−π

1−qo

qo

)
+ 1

1−π

− γqo(vh − vl)− γ(κ+ vl)

The seller’s payoff is the difference between the total surplus and the consumer payoff:

V S(p, D,q, γ) ≤
(

π

1− π
vh + vl

)
1 + γ

ln
(

π
1−π

1−qo

qo

)
+ 1

1−π

− γqo(vh − vl)− γ(κ+ vl)− qo(vh − vl)

= (1 + γ)Ṽ S(qo)− γ(κ+ vl)

By Lemma 15 again, for every γ, qo ≥ Q(γ), where Q(γ) is defined as:[
ln

(
π

1− π

1−Q(γ)

Q(γ)

)
+

1

1− π

]
=

1 + γ

γ(1−Q(γ))

Hence, the seller’s maximal profit among all market outcomes that use outlet locations is at
most:

V ∗ = sup
γ≥0

sup
qo∈[Q(γ),π]

qo>0

(1 + γ)Ṽ S(q)− γ(κ+ vl)

Alternatively, suppose that consumers only shop at non-outlet locations (Do = 0). In this
case, the seller may extract the whole total surplus from a market outcome by charging a
price of vh at all store locations. The seller’s optimal profit among such market outcomes is:

V ∗∗ = sup
γ>0

V̂ S(γ, κ)

where V̂ S(γ, κ) =

(
π

1− π
vhγ(1−Q(γ))−Q(γ)vhγ − γκ

)
Finally, whenever consumers shop only at outlet locations, the seller receives a constant

price p̄ ≤ vl, and the seller’s profit is at most vl ≤ V ∗ = Ṽ S(π).
Let q∗ be the optimizer of Ṽ S over (0, π]. I now establish the following:

max{V ∗, V ∗∗} =


Ṽ S(q∗), if π/(1− π)vh ≤ κ

maxγ∈(0,∞) V̂
S(γ, κ), if Ṽ S(q∗) > κ+ vl

max
{
Ṽ S(q∗),maxγ∈(0,∞) V̂

S(γ, κ)
}
, if κ ∈

[
Ṽ S(q∗)− vl, π

1−π
vh
)
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Case 1. Note that whenever Ṽ S(q∗) > κ + vl, the seller is better off not having outlet
locations: V ∗∗ > V ∗. Indeed, note first that Q(γ) is increasing γ. In addition, limγ→0Q(γ) =

0 and limγ→∞Q(γ) = π. Hence, there exists a unique γ̃ ∈ (0,∞), such that Q(γ̃) = q∗.
Then, for all γ ≤ γ̃:

(1 + γ)Ṽ S(qo)− γ(κ+ vl) ≤ (1 + γ)Ṽ S(q∗)− γ(κ+ vl) ≤ (1 + γ̃)Ṽ S(Q(γ̃))− γ̃(κ+ vl)

<

(
π

1− π
vhγ̃(1−Q(γ̃))−Q(γ̃)vhγ̃ − γ̃κ

)
≤ V ∗∗

Similarly, for all γ > γ̃,

sup
qo∈[Q(γ),π]

qo>0

(1 + γ)Ṽ S(qo)− γ(κ+ vl) = (1 + γ)max{Ṽ S(π), Ṽ S(Q(γ))} − γ(κ+ vl) < V ∗∗

where I use the fact that Ṽ S is convex-concave by Lemma 16, and hence whenever Q(γ) is
binding, Ṽ S reaches its optimum at one of the corners. That is, Ṽ S(q∗) > κ+ vl is sufficient
for the seller not to use outlet locations.
Case 2. Alternatively, suppose Ṽ S(q∗) ≤ κ+ vl, then:

sup
qo∈[Q(γ),π]

qo>0

(1 + γ)Ṽ S(qo)− γ(κ+ vl) ≤ (1 + γ)Ṽ S(q∗)− γ(κ+ vl) ≤ Ṽ S(q∗)

That is, in this case, V ∗ = Ṽ S(q∗), and the seller does not use direct disposal simultaneously
with outlet locations. Analogously, we can verify that for π/(1− π)vh ≤ κ, the seller prefers
to have a positive measure of shoppers at outlet locations, since V ∗ ≥ Ṽ S(π) = vl > 0 = V ∗∗.

Optimal Disposal Rate. Let me now verify that an optimal V̂ S attains its optimum
on (0,∞) for any κ > 0 whenever π/(1− π)vh > κ. Consider:

∂V̂ S

∂γ
=

π

1− π
vh(1−Q(γ))−Q(γ)vh − κ− γvh

1− π
Q′(γ)

→
γ→∞

−κ− lim
γ→∞

γvh

1− π
Q′(γ) ≤ −κ

→
γ→0

π

1− π
vh − κ− lim

γ→0

γvh

1− π
Q′(γ) > 0

Hence, the unbounded disposal rate is suboptimal. To establish the optimal choice of γ is
strictly above 0 for any π/(1− π)vh > κ, it is enough to show limγ→0 γQ

′(γ) = 0.

Q′(γ)γ =
1

(1 + γ)/(1−Q(γ)) + γ/Q(γ)
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Hence, the limit limγ→0 γQ
′(γ) = 0 is determined by γ/Q(γ). From the definition of Q,

it must be that γ converges to 0 at the same rate as ln(Q(γ)), hence limγ→0
γ

Q(γ)
= ∞

implying limγ→0 γQ
′(γ) = 0 as required. That is, V̂ S(γ, κ) attains its maximum for every

κ ∈
(
0, π

1−π
vh
)
.

Solution Switches. Finally, to establish there is a unique threshold where the optimal
solution switches, note that Ṽ S(q∗) is independent of κ whereas maxγ∈(0,∞) V̂

S(γ, κ) is strictly
decreasing in κ. Hence, there exists κ̄(vh, vl, π) as in the formulation of the proposition.

To prove κ̄ is increasing in vl, note that maxγ∈(0,∞) V̂
S(γ, κ) is constant in vl, but Ṽ S(q∗)

is strictly increasing in vl. Hence, if vl increases, the seller is indifferent between the two
regimes at a higher production/disposal cost.

J Omitted Proofs for Section 4.2

Proof of Theorem 3. If the sales are zero, then all locations are non-outlet locations and the
outlet threshold is x̂ = 1. Otherwise, if the total sales are positive, then the market outcome
is x̂-threshold market outcome for some x̂ due to Lemma 13.

The total surplus satisfies the formulation of the theorem due to Lemma 14.
Let

∫
p(y)≤vl

dD(y) = Do.
Case 1.: Do > 0, then consumers shop at outlet locations with a positive probability (for
both market outcomes). By Lemma 13 (ii) and Lemma 11 (ii), all these locations have quality
q(x̂) (D-a.s.).
Case 1.1: Do < 1. In this case, by Lemma 13 (iii), consumers shop at prices (weakly) above
vl with probability 1, under both market outcomes. Hence, the consumers’ payoffs are given
by V B(p, D,q, γ) = q(x̂)(vh − vl). Consequently, the seller’s payoff equals:

V S(p, D,q, γ) = TS(p, D,q, γ)− q(x̂)(vh − vl)

I now show the additional part of the theorem. First, any market outcome with zero sales
is suboptimal, so let me restrict attention to the outcomes with positive sales. D can only
have discontinuities at non-outlet locations if a positive mass of consumers shop there. If
Do > 0, from the above analysis, the seller’s payoff is

V S(p, D,q, γ) = (Do + γ)(1− q(x̂))

(
π

1− π
vh + vl

)
− (1 + γ)q(x̂(vh − vl)− γ(κ+ vl)
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which is decreasing in q(x̂. From Lemma 15, q(x̂ < q̃o for q̃o:

1 + γ = (Do + γ)(1− q̃o)

[
ln

(
π

1− π

1− q̃o

q̃o

)
+

1

1− π

]
Similar to Proposition 4, we can construct a market outcome with a uniform shopping strat-
egy that will result in the quality composition q̃o.

If Do = 0, then the seller may extract the whole surplus with a constant price vh:

V S(p, D,q, γ) ≤ TS(p, D,q, γ) = γ(1− q(x̂))

(
π

1− π
vh + vl

)
− γq(x̂)(vh − vl)− γ(κ+ vl)

As TS is decreasing in q(x̂), the seller again would benefit by deviating to p̃(x) = vh, σ̃ = 1

with the same disposal rate γ.

K Omitted Proofs for Section 4.3

Consider a market outcome p ∈ A, (σ,q) ∈ Ep,γ and the partition of the locations as in
Lemma 4: x̂i = inf{x ∈ X : p(x) ≤ vi}, with a convention that x̂i = 1 whenever p(x) > vi

for all x ∈ X, and xi = 0.
Define the lowest-always-purchased (LAP) vj such that a product vj is purchased with

probability one when found:

j ≡ max
n≥i≥1

{
i :

∫ x̂i

0

σ(y)dy = 0

}
And define the lowest-ever-purchased (LEP) product-value vJ as the lowest quality that can
ever be purchased with positive probability given the price schedule p:

J ≡ max
n≥i≥1

{i : x̂i < 1}

Lemma 17. Consider a market outcome p ∈ A, (σ,q) ∈ Ep,γ with consumer surplus CS ≥ 0.
Then, for any such market outcome,

i) Then, LAP j satisfies:∑
k≤j

π(k)(vk − vj+1) ≥ CS ≥
∑
k≤j

π(k)(vk − vj)

ii) Define for all i ≥ j + 1:
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ρmi =
CS

Ei−1 − vi

Ei =
ρimEi−1 + (1− ρim)

π(i)∑
l≤i π(l)

vl

ρim + (1− ρim)
π(i)∑
l≤i π(l)

with Ej =

∑
l≤j π(k)(v

k − vj)∑
l≤j π(k)

then for all i such that x̂i < 1, we must have:

ρm(x̂i−) = ρim

ρm(x̂i) = ρim + (1− ρim)
π(i)∑
j≤i π(j)

iii) Let ρj =
∑

l<j π(l), then LEP J is such that for all k ≤ (>)J :

1− ρk∑
m≥k π(m)

[ k∑
i=j+1

(
ln

((
ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

)
1− ρim
ρim

)
+

ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

− ρim
1− ρim

)∑
l≥i

π(l)

]
≤ (>)

1

γ

In addition, if J = n, then the share of consumers shopping at a price of at most vn is:

1− ρn∑
m≥n π(m)

[
n∑

i=j+1

(
ln

((
ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

)
1− ρim
ρim

)
+

ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

− ρim
1− ρim

)∑
l≥i

π(l)

]
=

1−Do

γ +Do

Proof. (i) Let ȳj = sup{
∫ ȳj
0

σ(y)dy = 0}. Then, it must be that in any right neighborhood
of ȳj, the consumer shops with positive probability, and we can find a sequence {zk} with
zk → ȳj, such that the consumer’s payoff is given by :

CS =
n∑

i=1

q(i|zk)(vi − p(zk))+
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In addition, by Lemma 4 x̂i, p(x) ∈ (vj+1, vj) D-a.e. [x̂j, ĵl+1]. Hence, the consumer payoff
along the sequence is bounded by:

n∑
i=1

q(i|zk)(vi − vj)+ ≤ CS ≤
n∑

i=1

q(i|zk)(vi − vj+1))+

As zk → ȳj, q(i|zk) → q(i|ȳj) by continuity of q(i|·) due to Lemma 10. In addition, by
Lemma 11, q(i|ȳj) = q(i|0) = π(i), since q remains constant over [0, ȳj]. Hence, we obtain:∑

k≤j

π(k)(vk − vj) ≤ CS ≤
∑
k≤j

π(k)(vk − vj+1)

as required.
(ii) Step 1. At a boundary x̂i, the probability of purchase jumps upwards by q(i|x̂), as

consumers start purchasing a lower quality. Given Lemma 11 (ii), there is no learning about
quality i relative to any lower quality on (0, x̂i), hence we must have:18

q(vi|x̂i)

π(i)
=

(1− ρ(x̂i−))∑
l≤j π(l)

Then, we get the following boundary conditions on the purchasing probability:

ρ(x̂i) = ρ(x̂i−) + q(i|x̂i) = ρ(x̂i−) + (1− ρ(x̂i−))
π(i)∑
l≤i π(l)

In addition, by Lemma 11 (ii), the expected value of the product of a product conditional on
purchase is constant on [x̂i, x̂i+1) and must satisfy: conditions:

Ei =
ρ(x̂i−)Ei−1 + (1− ρ(x̂i−)) π(i)∑

l≤i π(l)
vl

ρ(x̂i−) + (1− ρ(x̂i−)) π(i)∑
l≤i π(l)

Again, we use the fact that the consumer starts purchasing a quality i at the boundary x̂i.
Step 2. Now, I will show that for every i such that x̂i < 1, we must have

CS = ρ(x̂i−)(Ei−1 − vi)∫ x̂i

x̂i−1

σ(y)dy > 0

I establish the above by induction.
18Where we use q(l|·) is continuous on (0, x̂n) by Observations 1 and 2.
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Initial Iteration i = j + 1. First, let me consider x̂j+1. Either x̂j+1 = 1, so that
the consumer only purchases the products whose value is at least vj, or else given quality
composition is continuous, the consumer can attain a payoff arbitrarily close to:

ρ(x̂j+1−)(Ej − vj+1) ≤ V B(p, σ,q, γ)

Let y = supx∈[0,x̂j+1]

{∫
z∈(y,x̂j+1]

σ(y)dy = 0
}
. Then, consumers do not shop over [y, x̂j+1]

with probability one, and ρ(y) = ρ(x̂j+1−). In addition, it must be that consumers shop
with a positive probability in the right neighborhood of y, hence as the consumer’s shopping
strategy os optimal, there is a sequence {zl} converging to y, such that

CS = ρ(zl)(Ej − p(zl)) ≤ ρ(zl)(Ej − vj+1) →
zl→y

ρ(x̂j+1−)(Ej − vj+1)

Hence, given V B(p, σ,q, γ), the purchasing probability at x̂j+1 satisfies

ρ(x̂j+1−)(Ej − vj+1) = CS

Iteration i. Suppose the statement is true for all k ≤ i − 1 for some i − 1 ≥ j + 1. If
x̂i = 1, the statement is trivially true. Otherwise, suppose that x̂i < 1, then the consumer
can get a payoff arbitrarily close to

ρ(x̂i−)(Ei−1 − vi) ≤ V B(p, σ,q, γ)

If
∫ x̂i

x̂i−1
σ(y)dy = 0, the quality composition remains the same over an interval [x̂i−1, x̂i] due

to Lemma 11. In this case, due to Step 1, we get:

ρ(x̂i−)(Ei−1 − vi) = ρ(x̂i−1+)(Ei−1 − vi) = ρ(x̂i−1−)(Ei−2 − vi)

which implies

CS = ρ(x̂i−1−)(Ei−2 − vi−1) < ρ(x̂i−1−)(Ei−2 − vi) = ρ(x̂i−)(Ei−1 − vi)

where the first equality is due to the initial hypothesis of our proof by induction. Hence, we
may conclude that

∫ x̂i

x̂i−1
σ(y)dy > 0. This completes the proof by induction.

Combining steps 1 and 2, part (ii) of the Lemma follows.
(iii) By Lemma 11, (1−ρ(x))Sm(x) remains constant over any (x̂i−1, x̂i), in addition since
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S ′
m(x) = −ρ(x)σ(x), we obtain that over (x̂i−1, x̂i):

ρ′(x) = −ρ(x)(1− ρ(x))
σ(x)

Sm(x)

Recall that J is the lowest quality that is purchased with positive probability, then we have∑
l≥J q(l|x)Sm(x) remains constant over [0, x̂j). In addition, by Lemma 11, for x ∈ (x̂i−1, x̂i):

(1− ρ(x)) =
∑
l≤J

q(l|x)
∑

l≥i π(l)∑
m≥J π(m)

so that we obtain

ρ′(x) = −ρ(x)(1− ρ(x))2
σ(x)

(1− ρ(x̂J−))Sm(x̂J)

∑
m≥J π(m)∑
l≥i π(l)

That is, in a market outcome p ∈ A, (σ,q) ∈ Ep,γ, we must have:∑
l≥i π(l)∑

m≥J π(m)

(
ln

(
ρ(x̂i−1)

1− ρ(x̂i−1)

1− ρ(x̂i−)

ρ(x̂i−)

)
+

ρ(x̂i−1)

1− ρ(x̂i−1)
− ρ(x̂i−)

1− ρ(x̂i−)

)
=

D(x̂i)−D(x̂i−1)

(1− ρ(x̂J−))Sm(x̂J)

As D(x̂J) ≤ 1 and Sm(x̂J) ≥ γ, then from the above:

(1− ρ(x̂J−))

[
J∑

i=j+1

∑
l≥i π(k)∑
m≥J π(l)

(
ln

(
ρ(x̂i−1)

1− ρ(x̂i−1)

1− ρ(x̂i−)

ρ(x̂i−)

)
+

ρ(x̂i−1)

1− ρ(x̂i−1)
− ρ(x̂i−)

1− ρ(x̂i−)

)]

=
D(x̂J)

Sm(x̂J)
≤ 1

γ

Combining with part (ii), we obtain that for J , the desired inequality must hold:

1− ρJ∑
m≥J π(m)

[
J∑

i=1

(
ln

((
ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

)
1− ρim
ρim

)
+

ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

− ρim
1− ρim

)∑
l≥i

π(l)

]
≤ 1

γ

As ρim are
∑

k≥i π(k) are both decreasing i, then for all k ≤ J :

1− ρk∑
m≥k π(m)

[
k∑

i=1

(
ln

((
ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
j≤i−1 π(j)

)
1− ρim
ρim

)
+

ρi−1
m

1− ρi−1
m
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+
π(i− 1)∑
j≤i−1 π(j)

− ρim
1− ρim

)∑
l≥i

π(l)

]
≤ 1

γ

If J = n, then we are done, and the statement is true. In addition, Sm(x̂J) = Do + γ,
and we obtain:

1− ρJ∑
m≥J π(m)

[
J∑

i=1

(
ln

((
ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

)
1− ρim
ρim

)
+

ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
l≤i−1 π(l)

− ρim
1− ρim

)∑
l≥i

π(l)

]
=

1−Do

γ +Do

Otherwise, let x̄ = inf{x ∈ X : D(x) = 1}. In this case, Sm(x̄) = γ and D(x̄) = 1, then
as we obtain that:19

1− ρ(x̄)∑
m≥J+1 π(m)

[(
ln

((
ρJm

1− ρJm
+

π(J)∑
l≤J π(l)

)
1− ρ(x̄)

ρ(x̄)

)
+

ρJm
1− ρJm

+
π(J)∑
l≤J π(l)

− ρ(x̄)

1− ρ(x̄)

)
1∑

l≥J+1 π(l)

+
J∑

i=1

(
ln

((
ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
j≤i−1 π(j)

)
1− ρim
ρim

)
+

ρi−1
m

1− ρi−1
m

+
π(i− 1)∑
j≤i−1 π(j)

− ρim
1− ρim

)
1∑

l≥i π(l)

]
=

1

γ

Then as the price never takes values below vJ+1 on X. Hence, it must be that ρm(x̄) > ρkm

for every k ≥ J + 1 and the result follows.

Proof of Proposition 7. By Lemma 13, for any market outcome p ∈ A, (σ,q) ∈ Ep,γ there
exists j and J such that only products with i ≤ J are purchased with positive probability (and
the existence of a threshold price follows); all products i ≤ j are purchased with probability
one when found.

By Lemma 3*, either the market outcome has zero total steady-state sales, or Sm(x̂n) > 0.
Whenever γ = 0, Sm(x̂n) > 0 only when there is a non-trivial mass of consumers shopping
at a price of at most vn.

19We now use that
∑

l≥J+1 q(l|x)Sm(x) remains constant over [0, x̄).
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Moreover, Lemma 17, for every CS such j and J are uniquely defined.
By Lemma 11, the expected value conditional on purchase, is constant on (x̂i, x̂i+1).

Applying Lemma 17, we can express the total surplus as follows:

TS(p, σ,q, γ) =
J∑

i=j

∫ x̂i

x̂i−1

ρm(x)Eiσ(x)dx+DoEn

=
J∑

i=j+1

Ei (S(x̂i−1)− Sm(x̂i)) +DoEn

= (Do + γ)(1− ρJm)
J∑

i=j+1

Ei

(
ρim

1− ρim
− ρi−1

m

1− ρi−1
m

− π(i− 1)∑
l≤i−1 π(l)

)
+DoEn

where ρim and Ei are uniquely defined for a given consumer surplus CS. Then, the total
consumer surplus only depends on the induced consumer surplus CS. It follows straightaway
that the seller’s payoff is the same for any two market outcomes inducing the same consumer
surplus CS.

L Omitted Proofs for Section 4.4

To use the results from the previous sections, note that we can derive the mass of effective
shoppers to be:

D(x) =

∫
θ:x(θ)≤x

1{p(x(θ)) ≤ θ}f(θ)dθ

Neither of the results in Appendix F rely on D(1) = 1 (rather than any smaller); hence they
readily apply to D(·) as specified above.

In particular, from Lemma 3* in any market outcome with non-zero sales, there is a
positive mass of consumers shopping at outlet locations. If x̂ = inf{x : p(x) ≤ vl}, then
q(x̂) > 0, then from Lemma 12, q(x̂) ≡ qo > 0. And from Lemma 13, all locations in (x̂, 1)

are outlet locations D-a.s.; in addition, almost all such locations hold quality composition qo

by Lemma 11.

Lemma 18. In every market outcome,

i) Q is increasing
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ii) For every θ > vl:

U(θ) = U(θ̄) +

∫ θ

θ̄

Q(s)ds

where

θ̄ = sup{θ : p(x(θ)) ≤ vl}

Proof. As qo > 0, and there is a positive measure of outlet locations in (x̂, 1), then any type
θ > vl receives a strictly positive payoff in every market outcome. Hence, for almost every θ

(apart possible at the boundary where θ = vl), p(x(θ)) < θ.
Then, from (IC), for any θ, θ′ > vl, θ does not have a profitable deviation towards x(θ′)

if and only if:

U(θ) ≥ U(θ′) +Q(θ′)(θ − θ′)

Note that for any market outcome with positive total sales, θ̄ > vl, so that by the standard
argument we obtain that Q agrees with IC only if Q is increasing and

U(θ) = U(θ̄) +

∫ θ

θ̄

Q(s)ds

Lemma 19. In every market outcome

i) if θ < θ̄, then x(θ) ≥ x̂

ii) x is decreasing on (θ̄, vh]

Proof. i) Suppose not, and there exists θ̃ < θ̄, such that x(θ) < x̂. By definition of x̂, then
p(x(θ̃)) > vl.

In addition, there exists θ′ arbitrarily close to θ̄ shopping at outlet locations with a quality
composition qo. As p(x(θ̃)) > vl, then θ̃ does not have a profitable deviation to one of the
outlet locations only if Q(θ̃) > qo. But then we obtain a contradiction with monotonicity of
Q from Lemma 18.

ii) By definition of θ̄, all consumer types above θ̄, shop at non-outlet locations in (0, x̂).
Suppose by a way of contradiction that there exist θ1 > θ2 > θ̂, such that x̂ > x(θ1) > x(θ2).
By Lemma 11, (1 − q(x(θ1)))Sm(x(θ1)) = (1 − q(x(θ2)))Sm(x(θ2)). Hence, to satisfy the
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monotonicity condition for Q, it must be that a zero mass of consumers shop at location in
[x(θ2),x(θ2)]. This is only possible if a non-trivival subset of consumer types in (θ2, θ1) shops
either at locations (0,x(θ1)); or at location (x(θ2), 1).

Either way, we get that there exist some two types θ′1 > θ′2, for whom x(θ′1) > x(θ′2) and
there is a non-trivial mass of consumers shopping at (x(θ′2),x(θ

′
1)), which implies Q(θ′1) <

Q(θ′2) violating monotonicity of Q.

Proof of Proposition 8. (i) Follows from Lemma 19.
(ii) Consider θ < θ̄. By Lemma 19, x is decreasing on (θ̄, vh]. As x is injective, it is

strictly decreasing. Then, a mass consumers shopping between (x(θ),x(θ − ∆)] is ∆. By
Lemma 11, (1−Q(θ))Sm(x(θ)) = (1−Q(θ −∆))Sm(x(θ −∆)).

Then, ∆ → 0, Sm(x(θ−∆)) → Sm(x(θ)), as a vanishing mass of consumers shops between
on (x(θ),x(θ −∆)]. Hence, Q is right-continuous on (θ̄, vh]. We can similarly show that for
any θ ∈ (θ̄, vh), Q is also left-continuous.

In addition, we have:

Q(θ)−Q(θ −∆) = (1−Q(θ −∆))
Sm(x(θ))− Sm(x(θ −∆))

Sm(x(θ))

As we have:

Sm(x(θ))− Sm(x(θ −∆)) =

∫ θ

θ−∆

f(s)Q(s)ds

Then, Q is differentiable a.e. on (θ̄, vh] with

Q′(θ) = (1−Q(θ))Q(θ)
f(θ)

Sm(x(θ))

= (1−Q(θ))2Q(θ)
f(θ)

F
(
θ̄
)
Q
(
θ̄+
)

where we used again that the mass of low-quality products shipped across locations in (0, x̂)

remains constant, and Sm(x(θ̄+)) = F (θ̄), as all type below θ̄ shop at outlet locations,
where both types of products are purchased. To establish that Q as in the formulation of
the proposition, it remains to establish Q is right-continuous at θ̄. By monotonicity of Q,
Q(θ̄) ≤ Q(θ̄+). In addition, q(x̂) = Q(θ̄+) by continuity of q at x̂ due to Lemma 10,
Lemma 11. Since almost all consumers shopping at outlet locations get quality composition
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q(x̂), then due to monotonicity of Q, we must require:

Q(θ̄) ≥ q(x̂) = Q(θ̄+)

Hence, Q(θ̄) = Q(θ̄+).
(iii) Follows from (ii) and Lemma 18.
(iv) Note that as outlet locations charge a price of at most vl and almost all of them

hold quality composition Q(θ̄), it must be that U(θ̄−) ≥ Q(θ̄)(θ̄ − vl), whereas if θ̄ < vh,
U(θ̄+) ≤ Q(θ̄)(θ̄−vl), as all consumer types above θ̄ shop at prices above vl. Hence, whenever
θ̄ < vh, we must have:

Q(θ̄)(θ̄ − vl) ≥ U(θ̄+) ≥ U(θ̄−) ≥ Q(θ̄)(θ̄ − vl)

which can only hold if U(θ̄−) = Q(θ̄)(θ̄ − vl), meaning almost all outlet locations have a
price vl.

To prove there exists a market outcome with positive sales for every θ̄ ∈ (vl, vh], let me
construct a particular market outcome. Take any such θ̄, and let:

x(θ) =
1

3

(
1 +

θ − vh

vh − vl

)
Let the steady-state quality composition be specified as:

q(x) =


π, if x ≤ 1/3

Qθ̄(θ), if x ∈ [1/3,x
(
θ̄
)
]

Qθ̄
(
θ̄
)
, if x ≥ x

(
θ̄
)
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