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Abstract

I model markdown pricing as a tool for price discrimination by product quality when
quality is only observable to consumers. A seller offers durable goods of uncertain
quality. She introduces new inventory at high prices and gradually marks down unsold
inventory. Consumers arrive sequentially, choose a price point at which to inspect a
good, observe its quality, and decide whether to purchase. Their decisions endogenously
sort products by quality across markdown levels, resulting in indirect price discrimi-
nation by quality. I characterize sorting equilibria: steady states in which consumers
optimally choose prices for inspection and sustain the quality distribution through their
purchases. Despite the richness of the equilibrium set, the main result shows that any
equilibrium can be summarized by a single statistic. Consumer and seller payoffs de-
pend only on the relative quality difference between the highest and lowest prices, while
intermediate markdowns and the sorting path are payoff-irrelevant. I show that the
seller faces a fundamental trade-off: she must sacrifice sales volume and efficiency to
achieve quality-based price discrimination.

JEL Classification: D42, D82, D83, L11, L15.

Keywords: Markdown pricing, Product quality, Price discrimination, Sorting, Inventory
management, Consumer search, Adverse selection.

∗Department of Economics, The University of Chicago. Email: eistomina@uchicago.edu. I am extremely
grateful to my advisors at the University of Chicago: Ben Brooks, Emir Kamenica, Doron Ravid, and Lars
Stole, for their invaluable guidance and support. I also thank Alex Frankel, Marina Halac, John Mori,
Aleksei Oskolkov, Agathe Pernoud, Joseph Root, Christoph Schlom, Frank Yang, Karen Wu, Zizhe Xia, and
the participants of the micro-theory seminar at the University of Chicago for their helpful feedback.

mailto:eistomina@uchicago.edu


1 Introduction

Many firms offer unsold inventories at reduced prices through markdowns. A vivid example
is Filene’s Basement, a Boston retailer that implemented an automated markdown system: if
an item remained unsold for twelve days, its price was automatically reduced by 25%. After
six more days, the markdown rose to 50%, and after another six days, to 75% of the original
price (The New York Times, 1982). Today, similar strategies are widespread and appear in
different forms: some firms move unsold goods to outlet stores, while others rely on clearance
racks or “special offer” tags. In all cases, consumers search among goods that differ in both
price and expected quality, depending on how long they have remained unsold.

Markdowns enable sellers to price-discriminate by product quality, even when that quality
is unobservable to them. Markdowns reflect prior demand: unsold goods are more likely to
be of lower perceived quality. This mechanism is especially valuable when sellers lack prior
demand data (for instance, due to short product life cycles) but face sizable marginal costs.
Examples include apparel,1 furniture, and toys.

This indirect form of price discrimination must be sustained by consumer behavior. For
example, suppose consumers choose between a full price and a markdown price. Because
marked-down items are more likely to be of low quality, consumers weigh the trade-off between
price and expected quality. At the same time, their decisions shape quality composition across
price levels. If few consumers choose the full price, the lack of full-price sales is uninformative,
and many high-quality goods are marked down, reinforcing demand for a markdown price.
This feedback loop between consumer behavior and product sorting is the central focus of
the paper.

This paper develops a tractable equilibrium model in which markdown pricing endoge-
nously sorts goods by quality through consumer choice. The model allows for a continuum of
prices, but remains tractable due to two modeling choices. First, I restrict attention to the
steady states. In a sorting equilibrium, consumers choose prices optimally given the qual-
ity composition, and sustain this composition constant over time. Second, I fix the pricing
process: unsold goods flow linearly through the price structure at rates that keep inventory
constant at each price point.

The main result shows that the entire set of sorting equilibria can be described by a single
statistic: the ratio of high-quality shares between the highest and lowest prices. Conditional
on this ratio, the exact markdown and sorting paths are irrelevant for both consumer and
seller payoffs. I use this dimensionality reduction to solve for the monopolist’s optimal

1For instance, Fisher and Raman (1996) provides a case study of Sport Obermeyer, a sportswear manu-
facturer that commits to production decisions about two years ahead, with 95% of its products being new
designs.
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equilibrium, but the irrelevance result applies more broadly to any market structure.
The equilibrium highlights a fundamental trade-off: to enable quality-based price dis-

crimination, the seller must forgo sales volume. Successful sales generate surplus, but forgone
sales enable sorting and improve the match between the product’s quality and its transaction
price. Unlike consumer segmentation, this form of price discrimination necessarily reduces
total welfare.
Model. Section 3 models a seller who offers many different durable goods. Some goods are
more valuable to consumers, for example, because they are perceived as fashionable. Most
of the analysis focuses on a binary case, where each good is either high- or low-quality.2 All
consumers prefer high-quality goods to low-quality ones. In the baseline model, consumers
are homogeneous and value each quality type identically.

The seller manages a continuum of locations occupying a segment between 0 and 1.
Locations differ in their prices and the share of high-quality goods in their stock. Within
a location, prices are uniform across the goods. Depending on the exact implementation of
markdowns, a “location” may correspond to a distinct store, a section within a store, or a
price tag. Inventory flows continuously across locations downstream (from 0 to 1), and the
flow rates are set so that each location’s stock remains constant.3

Consumers arrive sequentially and choose where to inspect the goods. As with locations,
consumer strategy admits multiple interpretations. If the different locations are different
stores, consumers choose which one to visit. Otherwise, consumers choose how to divide
their attention between the locations (e.g., browsing the front of the store versus the clear-
ance rack). Each consumer inspects one good at random: the more attention he pays to a
given location, the more likely he is to inspect there. The consumer then draws a random
good from that location’s stock, learns its quality, and decides whether to purchase at the lo-
cation’s posted price. All consumers are short-lived and exit the market after they make their
purchasing decision about the inspected good. The seller does not observe which products
are drawn by consumers.

A market outcome is the joint distribution of prices, consumer shopping strategy, and
the quality composition across the locations. A sorting equilibrium imposes two restrictions.
First, the quality composition must be a steady state sustained by the prices (that determine
which quality types are purchased) and the consumer strategy. Second, the consumer strategy
must be optimal given the prices and the quality composition. Prices are not pinned down

2Throughout, the “quality” is used to describe a taste shock for a good. This shock is common across
consumers: all consumers agree on which goods are fashionable. This differs from contexts where quality
reflects observable characteristics known to the seller.

3An alternative pricing scheme based on product vintage is shown to be equivalent under steady-state
restrictions; see Section 5.
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by the equilibrium; instead, they parameterize a set of sorting equilibria.
Main Results. Theorem 1 in Section 4.1 characterizes all sorting equilibria: there are
two groups of locations, divided by some threshold. Upstream of the threshold, prices are
relatively high, and consumers purchase only high-quality goods; downstream, prices are low,
and consumers purchase both qualities. As goods move downstream and get more picked
over, the share of high-quality items declines gradually.

Theorem 1 also delivers an irrelevance result. To characterize equilibrium payoffs, one
need not track the full dynamics of markdowns or sorting paths. Instead, equilibrium payoffs
are fully summarized by a single variable: the sorting precision between the locations offering
the highest and lowest prices. The sorting precision is measured by the ratio of high-quality
shares between those two locations.

The irrelevance result in Theorem 1 greatly reduces the dimensionality of the analysis.
It lets me solve the monopolist’s problem in Section 4.3. More broadly, the result applies
beyond the single-seller setting as it does not rely on the optimality of the prices. It may prove
useful in richer strategic environments, e.g. with upstream manufacturers and downstream
off-price retailers.

Proposition 1 formalizes the fundamental trade-off in markdown pricing: the greater the
sorting precision and price discrimination by quality, the lower the total quantity sold. In
the extreme, perfect sorting (offering no markdowns for high-quality goods) yields zero sales.
In equilibrium, a greater sorting precision requires more consumers to shop at high-priced
locations that are below the threshold. These consumers purchase high-quality goods before
they are marked down, but also encounter low-quality goods that they reject, reducing total
sales. As sorting becomes more precise, markdowns steepen, and prices upstream of the
threshold rise. Higher prices attract consumers because they imply better odds of finding
high-quality goods. This positive equilibrium relationship between prices and consumer price
choice resembles a Veblen effect, but is driven by quality sorting rather than conspicuous
consumption (as in Bagwell and Bernheim (1996)).

Section 4.3 studies the seller-optimal sorting precision. I show in Proposition 2 that the
seller chooses greater sorting precision when (i) the value of high-quality products rises, or
(ii) the ex-ante share of high-quality goods is sufficiently high and increases. In each of these
cases, more of the welfare is destroyed to sharpen price discrimination by quality.

Section 4.4 extends the model to allow for direct disposal. In the baseline, inventory is
cleared only through sales. In practice, however, retailers sometimes discard or donate unsold
goods.4 In the extension of the model, the seller can choose the rate at which the unsold

4For instance, Filene’s Basement sent unsold goods to charity after thirty days on the shelf (The New
York Times, 1982).
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products flow out of the final location at 1. Disposal is costly, representing either disposal
expenses directly (e.g., transportation or handling) or the replacement cost (marginal costs
of production). For any fixed disposal rate, the main insights of Theorem 1 continue to hold.
Moreover, Proposition 3 shows that the seller uses only one way of clearing the low-quality
items from her stock. When disposal costs are high, the seller relies on outlet locations with
low prices to clear unsold inventory; when the costs are low, the seller discards inventory
directly to maintain high prices across all locations.
Vintage-Based Markdowns. The disposal extension sets the stage for a comparison with
vintage-based markdowns. The baseline model adopts an inventory-driven pricing process.
This specification is best suited to spatial implementations of markdowns, such as a flag-
ship/outlet retail structure.5 It also simplifies the analysis and yields a particularly sharp
characterization of sorting equilibria. An alternative approach is a vintage-based pricing
process, closer in spirit to Filene’s markdown system, in which prices depend explicitly on
the goods’ age. Section 5 explores how the model’s predictions change under this alternative,
where all goods are automatically repriced as they age. Theorem 2 shows that, under the
steady-state restrictions, both pricing processes yield equivalent equilibrium outcomes.
Extending and Evaluating the Model. The baseline model captures the equilibrium
nature of markdowns in the most tractable setup. Below, I outline three extensions that
expand the applicability of the model.

First, the baseline version of the model focuses on infinitely many operated locations:
consumers divide their attention smoothly across locations. Proposition 4 in Section 6.1
shows that this restriction is without loss. In fact, the seller strictly benefits from operating
infinitely many store locations: a finer markdown structure allows the seller to sort products
more precisely, with lower sales losses.

Second, in the baseline model with binary quality, the seller never uses both markdowns
and direct disposal in the optimum. To make the model more realistic, Section 6.2 extends
the model to allow for multiple quality levels. With this quality uncertainty, the seller may
use both clearance methods: offer lower prices to clear intermediate-quality items through
sales, but dispose of the lowest quality levels herself.

Third, the baseline model assumes homogeneous consumers. Section 6.3 relaxes this
assumption and models heterogeneous consumers with varying marginal utility from quality.
Equilibrium payoffs in this extension resemble those of the classical monopolistic screening
problem of Mussa and Rosen (1978). Unlike the standard screening models, the menus of
prices and qualities are not set by the seller but arise endogenously through consumer choice.

5Agrawal and Smith (2009) points out that the steepest markdowns are often implemented by moving
unsold inventories to outlet stores.
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Consumers self-sort across locations: earlier locations offer higher prices and better goods,
attracting higher types. These consumers absorb high-quality items, shaping the menus that
lower types face at downstream locations.

Some important features of real-world markdowns are intentionally omitted in this paper
to isolate the consumer’s role in product sorting. A notable omission is time-based quality
depreciation, such as seasonality. While depreciation can enrich the sorting mechanism,6 it
also adds pressure to clear inventory quickly.

The model also assumes a fixed pricing structure. This sets a useful benchmark grounded
in real-world practice (such as Filene’s) and reflects practical constraints of more nuanced
pricing strategies.7 Still, the optimal design of markdown structures remains an open ques-
tion. Future work could examine whether linear stock reallocation is optimal or if more
flexible strategies could improve efficiency and profitability.

2 Numerical Example

To build intuition, consider a simplified numerical example. It illustrates the core equilibrium
interaction between consumers, pricing, and product sorting.

A seller offers many different goods—such as apparel—and operates two locations: a
flagship store (regular-priced) and an outlet store (marked-down). At each location, the
total stock of goods is one. Each good is either high- or low-quality. When produced, a
good is high-quality with probability 7/9 (independently across different goods). Consumers
can observe the quality of any good before purchase. A high-quality good is worth 9 to any
consumer, while a low-quality one is worth 1.

The two locations differ in their prices and the stock quality composition. Otherwise, they
are identical from the consumer’s perspective. At the flagship, two-thirds of the goods are
high-quality; at the outlet, one-third are. The flagship charges a higher price of 5, while the
outlet’s price is 1 (the value of low-quality goods). Table 1 summarizes the key characteristics
of the two locations.

Flagship Outlet
Total stock mass 1 1
Price per item 5 1
Share of high-quality items 2/3 1/3

Table 1: Numerical Example: Flagship and Outlet

6For instance, the seller may simply wait for high-value consumers to buy before marking goods down.
7For example, Caro, Babio, and Peña (2019) note that Zara releases around 8,000 products per year,

making granular pricing decisions too costly.

5



A unit mass of consumers each chooses which location to visit. Consumers know the
prices and quality compositions at both locations before making a decision. Upon visiting,
each consumer is randomly matched to a single good from the selected location’s stock. That
is, the probability of drawing a high-quality item is 2/3 at the flagship and 1/3 at the outlet.
Then, the consumer observes the quality of the drawn good, decides whether to purchase it
at the (visited location’s) posted price, and exits the market. Consumers thus trade off price
against the chance of finding a more valuable good. Relative attractiveness of the flagship’s
quality composition is captured by the sorting precision, the ratio of high-quality shares
between the flagship and the outlet.

Consumers’ trade-off is balanced in this example: they are indifferent between the two
locations. At the flagship, consumers only buy when they find a high-quality item, receiving
a payoff of 9 − 5 = 4. As high-quality items are drawn with probability 2/3, the expected
payoff from visiting the flagship is 2/3 × 4 = 8/3. At the outlet, consumers buy all items
regardless of quality. The expected payoff at the outlet is 1/3× (9−1)+2/3× (1−1) = 8/3,
same as at the flagship.

Purchases affect the quality composition differently across locations. Suppose 3/4 of
consumers visit the flagship and 1/4 visit the outlet. Since consumers are indifferent between
the two locations, each chooses optimally. At the flagship, consumers only buy high-quality
goods in the mass of 3/4 × 2/3 = 1/2. This leaves 2/3 − 1/2 = 1/6 of the high-quality
items unsold. The mass of the remaining low-quality items stays at 1/3. The resulting
post-purchases high-quality share in the flagship’s stock is

1/6

1/6 + 1/3
= 1/3.

At the outlet, the stock composition is unchanged. Consumers purchase any good they
are matched to, regardless of quality. The total mass of purchases equals the total number
of outlet visitors 1/4.

The initial inventory levels and quality composition from Table 1 can be restored even
if the seller cannot observe product quality. To replenish the outlet, the seller transfers 1/4

mass of goods from the flagship (selecting goods at random). Recall that post-purchases, the
flagship has the same high-quality share as the outlet, 1/3. The outlet’s quality composition
is thus restored. The flagship, having transferred 1/4 and sold 1/2, retains a stock of mass
1/4. To restore it to full capacity, the seller adds 3/4 mass of new items. The resulting
flagship’s high-quality share is:

3/4× 7/9 + 1/4× 1/3 = 2/3.
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The quality composition is sustained by the prices and the consumer shopping strategy.
Prices determine which product types are purchased at each location, and consumers’ location
choices determine the volume of purchases. Together, they pin down the inflows and outflows
of high-quality goods and ensure the quality composition stays at a steady state.

Prices, consumer location choice, and quality composition together constitute a sorting
equilibrium. In my equilibrium definition, I require that (i) prices and consumer strategy
sustain the quality composition, and (ii) consumers choose location optimally. As we have
verified, both of these conditions are satisfied in the numerical example. Note that the
equilibrium takes prices as exogenously given.

Now consider what happens if the flagship price rises to 7 (while the outlet price stays
the same). Table 2 summarizes the resulting new sorting equilibrium, in which each location
still serves a positive mass of consumers.

Flagship Outlet
Price 7 1
Consumer Share ≈ 0.86 ≈ 0.14
Share of high-quality ≈ 0.5 ≈ 0.12

Table 2: New Sorting Equilibrium

With a higher flagship price, the sorting precision rises. Under the initial flagship price of
5, the sorting precision was 2/3÷ 1/3 = 2. As the price increases to 7, the sorting precision
doubles. Sharper sorting preserves consumer indifference: while the flagship is now more
expensive, it offers even better odds of finding a high-value product relative to the outlet.

Higher sorting precision can be sustained only when more consumers choose to visit the
flagship location. They pick out more of the high-quality goods, and the flagship’s post-
purchases remaining stock is more likely to be of low quality. This generates a positive
equilibrium relationship between the flagship price and its customer share. To an outside
observer who does not account for the equilibrium sorting effects, it may appear like an
upward-sloping demand for the flagship store, or a Veblen effect.

Higher flagship price reduces total surplus and worsens quality composition at both lo-
cations. Some consumers who previously visited the outlet now switch to the flagship and
only buy if they draw a high-quality product. As a result, total purchases fall. With slower
turnover, fewer new items are added, and low-quality goods remain in inventory longer. This
lowers the share of high-quality goods in both stores’ inventory.

In Appendix OA1, I generalize this equilibrium comparative statics with respect to the
flagship price. Figure 1 summarizes the main equilibrium effects. Figure 1a plots how the
equilibrium sales volume and the flagship customer share vary with the flagship price. As the
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flagship price rises, more consumers visit the flagship location, but total sales fall. Figure 1b
shows that the equilibrium share of high-quality goods falls at both stores with the flagship’s
price. The decline is steeper at the outlet, resulting in greater sorting precision.
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Figure 1: Equilibrium Comparative Statics with Respect to Flagship Price
Note: The figure shows how key model outcomes vary with flagship price in the interior sorting equilib-

rium. Figure 1a plots the volume of flagship customers (dashed) and total per-period sales (solid). Figure 1b
shows high-quality shares at the flagship (solid black) and outlet (dashed black), and sorting precision (purple,
dot-dashed), defined as their ratio.

What is the seller-optimal sorting equilibrium? The numerical example illustrates a key
trade-off: higher sorting precision improves the seller’s ability to identify and price high-
quality goods, but it comes at the cost of lower total sales. At one extreme, the seller can
set both prices to 1, giving up on the product sorting entirely. All consumers purchase their
matched item, and the stock composition is at the production plant’s level. The seller earns
a total profit of 1 each period. At the other extreme, the seller can raise the flagship price
to nearly 9, the maximum consumers are willing to pay for high-quality goods. This requires
near-perfect sorting but slows inventory turnover so much that both stores become depleted
of high-quality goods, and sales collapse. In the optimum, the seller sets some interior price
that balances these opposing forces.8

8For instance, both of the above extremes are dominated by the numerical example of Table 1. To verify,
the seller earns a profit of 5 × 1/2 = 5/2 at the flagship store by charging a price of 5 from all flagship
consumers who get matched to a high-quality product. At the outlet, the seller earns 1/4 by making sales to
all its consumers at a price of 1. As a result, the seller achieves a total profit of 11/4 from both locations.
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3 Model

The section presents a model of equilibrium markdowns with a rich pricing structure. A
seller produces goods of unknown quality and sets prices across a continuum of locations.
Consumers choose where to shop based on the anticipated quality distribution, draw one
good at random, learn its quality, and decide whether to purchase. Prices determine which
products are purchased at each location. The markdown process is fixed: unsold inventory
flows downstream and is repriced at rates that keep stock constant across price levels. I in-
troduce sorting equilibrium, which formalizes endogenous product sorting by quality through
consumer choice. It imposes steady-state restrictions on prices, consumer behavior, and the
quality distribution. The next section characterizes all such equilibria in the main result,
Theorem 1, and studies the seller’s optimal choice among them.

Products. A single long-lived seller (female) offers durable goods that differ in quality,
which is only observable to consumers. The seller perceives all goods as identical, and bears
0 marginal cost of producing either quality.9 Consumers (males), by contrast, observe each
product’s quality before purchase. They derive utility vh from high-quality products and vl

from low-quality ones, where vh > vl > 0. For interpretation, the quality of the good reflects
if it is fashionable.
Locations. The seller manages a continuum of locations indexed by x ∈ X = (0, 1). Location
0 is the production plant. The total inventory is normalized to 1 and is uniformly distributed
over X.10 Each location x ∈ X is characterized by its price p(x) and the share of high-quality
products in its stock q(x). Both the price schedule p : X → R and the quality composition
q : [0, 1) → [0, 1] are (Lebesgue-)measurable. The probability of a high-quality product at
the production plant, q(0), is fixed at π ∈ (0, 1). Depending on the application, locations
may represent distinct stores (flagship/outlet), parts within the store (storefront/clearance
rack), or price tags (regular/marked-down).
Consumers. Time is continuous, and at every instant, a flow of short-lived consumers
arrives at the market at a unit rate.11 Continuous arrival of consumers implicitly assumes
that the purchases are small relative to the stock at any location.12

Consumers allocate a limited amount of attention across the locations. The consumer
9This is a normalization. I could alternatively shift consumer values by the constant marginal cost of

production. I elaborate on this later, in Section 4.4.
10For the subsequent analysis, it is enough to assume that the distribution of stock is absolutely continuous

with respect to Lebesgue measure on X. The uniform distribution is a normalization.
11Over a time interval of length ∆, the mass of arriving consumers is ∆.
12To better relate to the two-store example from the introduction, the model in this section is a double

limit of a discrete model, as I both reduce the per-period mass of consumers and increase the number of
equally sized stores.
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strategy is a density function σ : X → R+ that describes the distribution of consumer
attention. Each consumer draws a single product at random. His strategy determines where
the product is drawn. The more attention a consumer pays to some locations, the more
likely he is to draw a product from there. For instance, the probability of drawing a product
from an interval [x1, x2] is

∫ x2

x1
σ(y)dy.13 I say that a location x is visited if it gets positive

attention from consumers: σ(x) > 0.
Conditional on the location, a product is drawn at random from its available inventory.

If location x holds a share q(x) of high-quality goods, then the consumer finds a high-quality
item at x with probability q(x). Upon drawing the product at location x, the consumer
learns its quality and decides whether to buy it at price p(x). A consumer earns a payoff
vω − p when purchasing a product of type ω ∈ {l, h} at price p. For notational simplicity,
ties in the purchasing decisions are broken in favor of a purchase.14 The seller does not see
which products are drawn by the consumers but are not purchased.

Prices fully determine which qualities are purchased at each location. A product of type
ω is purchased at location x whenever vω ≥ p(x). Then, there are three groups of locations:
(i) where neither quality is purchased, (ii) where only high-quality products are purchased,
and (iii) where both qualities are purchased. I refer to locations in the third group as outlets.
Formally, a location x is an outlet if p(x) ≤ vl. Otherwise, it is a non-outlet location.

The consumer expected payoff depends on the full market outcome (p, σ,q): a tuple of the
price schedule, the quality composition, and the consumer strategy. The consumer strategy
σ first determines the probability of drawing a product from each location. Conditional on
drawing a product from location x, the quality composition q gives the probability that it is
of high quality. Finally, the price p determines the terms of trade. The consumer expected
payoff at the market outcome (p, σ,q) is:15

V B(p, σ,q) =

∫
x∈X

[
q(x)(vh − p(x))+ + (1− q(x))(vl − p(x))+

]
σ(x)dx.

Pricing Process: Product Flows. Inventory moves to and from locations due to two
forces: consumer purchases and reallocations within X.16 Unsold inventory flows linearly in
the same direction from 0 to 1: each location receives inventory from its immediate upstream
neighbor and passes goods downstream.17 It follows that the average age of the reallocated

13Equivalently, consumers choose a single location to visit. Consumer strategy is then simply their mixing
strategy over all locations.

14This assumption does not play any substantive role in the analysis as it focuses on seller-preferred
outcomes.

15Here, and elsewhere (a)+ ≡ max{a, 0} for any a ∈ R.
16In Section 4.4, I also allow goods to flow from location 1 for disposal.
17For any two locations, x < y, location is y is downstream of x and location x is upsteam of y.
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goods increases with a location’s index.
The rates at which the products flow keep each location at its full capacity. Specifically,

the inventory flow rate through a location x at the market outcome m equals its downstream
sales Sm(x), the flow of purchases at all locations that are strictly downstream of x:

Sm(x) =

∫
y∈(x,1)

[
q(y)σ(y)1{p(y) ≤ vh}+ (1− q(y))σ(y)1{p(y) ≤ vl}

]
dy.

Say that a location x is a transition location in a market outcome m if it passes a positive
flow of goods: Sm(x) > 0. The seller does not observe the product quality, or consumer
product draws. Conditional on the location, she picks the reallocated inventory at random:
high-quality products flow through the location x at a rate q(x)Sm(x).

As this reallocation process is inventory-based, it best applies to spatial implementations
of markdowns, such as a flagship/outlet retail structure. This process makes the relationship
between sorting, prices, and sales the most transparent. It directly links the rate of price
changes to the rate of (downstream) sales. However, it does not allow the seller to price the
goods based on their age directly. In Section 5, I consider another, vintage-based pricing
process. I show that the two yield the same equilibrium outcomes when we narrow the
analysis to the steady states.

I summarize the inventory flows in Figure 2. Fix an interval of locations (x1, x2] ⊆ X,
and consider all inventory flows from and to this interval. First, inventory exits this interval
due to consumer purchases. The total mass of high-quality purchases within the interval is:∫

y∈(x1,x2]

q(y)σ(y)1{p(y) ≤ vh}dy,

and the total mass of low-quality purchases is:∫
y∈(x1,x2]

(1− q(y))σ(y)1{p(y) ≤ vl}dy.

In addition to purchases, inventory exits the interval through its right boundary x2, which
forwards products to downstream locations.18 The total mass reallocated downstream from
x2 is Sm(x2), of which mass q(x2)Sm(x2) is high-quality. The interval receives inventory
exclusively from location x1. The total inflow is Sm(x1), and the inflow of high-quality goods
is q(x1)Sm(x1).

18Interior locations (x1, x2) also pass goods downstream, but these shipments only redistribute inventory
within the interval (x1, x2] and do not affect its inflows or outflows.
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Locations

Production
Plant at 0

. . . stock mass:
x2 − x1

. . .

Sales in (x1, x2]:

High-quality purchases:
∫
y∈(x1,x2]

q(y)σ(y)1{p(y) ≤ vh}dy
Low-quality purchases:

∫
y∈(x1,x2]

(1− q(y))σ(y)1{p(y) ≤ vl}dy

(
0 x1

( ]
x2

)
1

Total flow : Sm(x1)
High-quality flow: q(x1)Sm(x1)

Total flow : Sm(x2)
High-quality flow: q(x2)Sm(x2)

Total flow: Sm(0)
High-quality flow: πSm(0)

Figure 2: Product Flows within a Period

The mass of inventory is kept constant by construction, but the quality composition
within an interval (x1, x2] may change over time. It only stays constant when inflows and
outflows of high-quality goods are balanced:∫

y∈(x1,x2]

q(y)σ(y)1{p(y) ≤ vh}dy + q(x2)Sm(x2) = q(x1)Sm(x1). (1)

We say that the quality composition q is sustained on A ⊆ X by prices and consumer
strategy (p, σ) if Equation (1) holds for any interval (x1, x2] ⊆ A. That is, the average quality
of products is at a steady state for any subinterval of A. For brevity, q is sustained by (p, σ)

if it is sustained on X.
Sorting Equilibrium. The central goal of the model is to capture the interdependence
between prices, consumer choices, and quality composition. To capture it in a tractable way,
I use an equilibrium concept that imposes steady-state restrictions on the market outcomes.
A market outcome (p, σ,q) is a sorting equilibrium if:

(i) the quality composition q is sustained by (p, σ);

(ii) each visited location maximizes consumer payoff given (p,q):

x ∈ argmax
y∈X

q(y)(vh − p(y))+ + (1− q(y))(vl − p(y))+.

Let E denote the set of sorting equilibria.
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The sorting equilibrium captures how consumer beliefs about the quality composition
become self-fulfilling through optimal choices. Suppose consumers follow a time-invariant
strategy σ, then the quality composition at every period t is described by:19

∂tqt(x) = −σ(x)qt(x)1{p(x) ≤ vh} − ∂x [Smt(x)qt(x)] ,

qt(0) = π.

A sustained quality composition q is a time-invariant solution to the above, capturing the
long-run limit.20

To justify a time-invariant consumer strategy, assume consumers do not observe either
the calendar date or the current quality composition. Then, condition (ii) restricts consumer
beliefs: at any date, consumer beliefs are dominated by the true long-run quality composition.
Seller. The seller maximizes her long-run profit flow

V S(p, σ,q) =

∫
p(x)∈(vl,vh]

p(x)q(x)σ(x)dx+

∫
p(x)≤vl

p(x)σ(x)dx

by selecting a sorting equilibrium:

sup
(p,σ,q)∈E

V S(p, σ,q).

To interpret, the seller posts prices and then nudges consumers towards self-fulfilling
beliefs about the quality composition. The steady-state restriction can be viewed as reflecting
the seller’s aversion to fluctuations in long-run profit. Methodologically, it greatly simplifies
the analysis: an intrinsically dynamic sorting process can be studied in a static environment.
While this approach rules out many potential seller strategies, the steady-state equilibrium
model provides a useful and compelling benchmark.
Efficient Benchmark. As a benchmark, suppose there is no seller, and consumers draw
their goods directly from production. The total surplus equals the expected value of a random
new good: πvh + (1 − π)vl. This is the efficient benchmark. The seller could extract this
surplus if she observed which quality type is drawn by every consumer.

Formally, let the total surplus of a market outcome (p, σ,q) be the sum of the seller’s
19Where mt = (p, σ,qt)
20To make this argument crisper, one would need to show convergence of qt to the steady state. In

Appendix C, I show convergence in simulations. In Online Appendix OA1, I verify convergence for a simpler
version of the model with two stores used for the numerical example.

13



flow profit and consumer payoff:

TS(p, σ,q) = V S(p, σ,q) + V B(p, σ,q).

A market outcome is efficient if its total surplus achieves the efficient benchmark of πvh +
(1− π)vl.

Different Paths, Same Destination. In general, the seller’s problem is very rich: comple-
mentarities in consumer choices imply multiplicity of sorting equilibria. Figure 3 plots two
sorting equilibria. In the first sorting equilibrium (p1, σ1,q1), consumers pay equal atten-
tion to all locations. Under the second one, (p2, σ2,q2), consumer attention gets polarized
towards the extremes.

The two plotted equilibria take different sorting paths from the production plant’s ex-
pected quality π towards the quality composition qo at their outlet locations. Which one
should the seller choose among these two options? In the next section, I show that they are
payoff equivalent.
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Figure 3: Two Examples of the Sorting Equilibrium

Note: the figure illustrates two sorting equilibria (p1, σ1,q1) (solid lines) and (p2, σ2,q2) (dashed lines).
The two equilibria are different in their paths of pricing and sorting, but have the same overall sorting
precision of π/qo.

4 Sorting Equilibria

This section analyzes the model. First, section 4.1 characterizes the set of sorting equilibria,
the feasibility set of the seller. Theorem 1 shows an irrelevance result: only the overall
sorting precision between the highest and the lowest prices matters for equilibrium payoffs,
not specific sorting and pricing paths. I use this dimensionality reduction to analyze the
seller’s problem in Section 4.3. Section 4.4 extends the model to allow for direct disposal of
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goods.

4.1 Equilibria Characterization: Irrelevance Result

Theorem 1 establishes two key properties of the sorting equilibria. First, every sorting equi-
librium features an outlet threshold x̂ ∈ [0, 1]: visited locations upstream of x̂ charge prices
above vl, while all visited locations downstream of x̂ are outlets. Generally, say that a market
outcome is a x̂-threshold market outcome if p(·) > vl on (0, x̂) (σ-a.s.)21 and p(·) ≤ vl on
[x̂, 1) (σ-a.s.).

Second, equilibrium payoffs for both the seller and consumers depend only on the quality
composition at the outlet threshold, q(x̂). This parameter also captures the extent of prod-
uct sorting: the sorting precision is defined as the ratio of high-quality shares between the
production plant and the outlet threshold, π/q(x̂).22 I call a sorting equilibrium neutral if
q(x̂) = π, and active if q(x̂) < π.

Theorem 1. Suppose a market outcome (p, σ,q) is a sorting equilibrium. Then, it is a
x̂-threshold market outcome for some x̂ ∈ [0, 1]. Furthermore:

(i) If no consumers visit outlet locations, i.e.,
∫ 1

x̂
σ(y)dy = 0, then both consumer and seller

payoffs are zero.

(ii) If (almost) all consumers visit outlet locations, i.e.,
∫ 1

x̂
σ(y)dy = 1, then the sorting

equilibrium is neutral and efficient. The seller’s payoff is at most vl.

(iii) If consumers visit both outlet and non-outlet locations, i.e.,
∫ 1

x̂
σ(y)dy ∈ (0, 1), then the

sorting equilibrium is active and inefficient. The payoffs are fully determined by the
quality composition at the outlet threshold x̂, with:

TS(p, σ,q) =
πvh + (1− π)vl

ln
(

π
1−π

1−q(x̂)
q(x̂)

)
(1− π) + 1

,

V B(p, σ,q) = q(x̂)(vh − vl).

Finally, for any q ∈ (0, π], there exists a sorting equilibrium (p, σ,q) ∈ E that has average
quality q at the outlet threshold x̂: q(x̂) = q.

21That is,
∫
p(y)≤vl,y∈(0,x̂)

σ(y)dy = 0. More generally, I say that a statement A holds σ-a.s. if the measure
of visited locations where A is false is 0:

∫
y∈X,where¬A

σ(y)dy = 0.
22Alternatively, we could define the sorting precision as the ratio between the earliest visited location

x0 = sup{x ∈ X :
∫ x

0
σ(x) = 0} and the outlet threshold x̂. This would be a more direct analog to a sorting

precision in the numerical two-store example. However, by Lemma 3, q(x0) = π in every sorting equilibrium,
so the two are equivalent.
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Theorem 1 divides all sorting equilibria into three types, based on how consumers dis-
tribute their attention between outlet and non-outlet locations.

If no consumers shop at outlet locations (part (i)), sales collapse entirely, and both
the seller and consumers receive zero payoffs. Without outlets, low-quality goods pile up,
ultimately crowding out all sales at high prices. If consumers only visit outlets (part (ii)),
the quality composition remains constant at π, and all consumers buy the goods they draw.
There is no sorting, but also no inefficiency.

In the most interesting case, consumers visit both outlet and non-outlet locations (part
(iii)). The sorting equilibrium is active and inefficient, with non-zero sales. Part (iii) also
formulates the irrelevance result. Once the sorting precision (π/q(x̂)) is fixed, other details
of prices, consumer strategy, or sorting are payoff-irrelevant. While the main focus of the
subsequent analysis is a monopolist’s problem, the irrelevance result applies to any market
structure. The sorting equilibrium does not require prices to be optimal: they could be set by
decentralized sellers. Theorem 1 closes the characterization of attainable payoffs by verifying
that any sorting precision can be achieved in some sorting equilibrium.

The irrelevance result lets us easily rank payoffs in all sorting equilibria with positive
sales.

Corollary 1. Consider two sorting equilibria m1 = (p1, σ1,q1), m2 = (p2, σ2,q2) ∈ E with
outlet-thresholds x̂1, x̂2 < 1, respectively. If q1(x̂1) > q2(x̂2), then both total surplus and
consumer payoff in m1 are higher than in m2.

Figure 4 plots all attainable equilibrium payoff pairs (V B, V S). Greater sorting precision
shrinks total surplus but reallocates more of it to the seller by bringing transaction prices for
high-quality goods closer to the consumers’ willingness to pay. Depending on the strength of
each effect, the seller’s payoff may either increase or decrease. I return to this in Section 4.3,
when I study the seller-optimal sorting precision.

Figure 4 highlights that, unlike consumer segmentation, price-discrimination by product
quality necessarily destroys total surplus. When screening consumer types, non-uniform
pricing can sometimes improve efficiency (e.g., by improving the match between the product
quality and the buyer’s willingness to pay). When the seller relies on non-sales to price-
discriminate her goods, any price-discrimination is wasteful.
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Figure 4: Attainable Equilibrium Payoffs

4.2 Proof Sketch of Theorem 1

The remainder of the section outlines the main steps in the proof of Theorem 1 and illustrates
how sorting equilibria are constructed. Formal proofs and technical details are deferred to
the Appendices.
Sorting Process. The starting point is to understand how prices and consumer strategies
shape the quality composition across locations. Lemma 1 summarizes the key restrictions
on q that can be sustained by some prices and consumer strategy (p, σ) on an interval. It
considers two cases, depending on whether the locations in the interval are outlets.

Lemma 1. Consider some market outcome m = (p, σ,q).

i) Suppose that p(·) > vl (σ-a.s.) over [x1, x2] ⊂ X. Then, q is sustained by (p, σ) on
[x1, x2] if and only if Sm(x)(1− q(x)) is constant over [x1, x2].

ii) Suppose that p(·) ≤ vl (σ-a.s.) over [x1, x2] ⊂ X and x2 is a transit location. Then, q
is sustained by (p, σ) on [x1, x2] if and only if q(x) is constant over [x1, x2].

Proof. See Appendix C for a proof.

In words, Lemma 1 states that at non-outlet locations, the downstream reallocation of
low-quality goods is constant. This ensures that inflows and outflows of low-quality goods
balance, as these goods only move through downstream reallocations at non-outlet locations.

At outlets, no sorting occurs, and the quality composition stays constant. Intuitively, as
consumers purchase both quality types, there is no information revealed by the lack of sales.
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Lemma 1 implies that all sorting by quality occurs at non-outlet locations, and the like-
lihood of high-quality goods declines at the rate of σ(·)/Sm(·):23

∂xq(x) = −q(x)(1− q(x))
σ(x)

Sm(x)
. (2)

Equation (2) shows that sorting is stronger when many consumers visit a location (σ(x) ↑)
and when inventory turns over slowly (Sm(x) ↓). Both of these strengthen the adverse
selection effect on the remaining inventory.
No Outlets: Sales Collapse. If no outlets are visited, the sales collapse.

In the absence of low-priced sales, the low-quality items gradually fill all available shelf
space. Consequently, consumers can not find any high-quality goods that are worth purchas-
ing at the high-priced locations. As the seller makes no sales, both the seller and consumers
receive a zero payoff. This corresponds to a x̂-market outcome for the outlet threshold x̂ = 1,
in which the seller sorts the goods perfectly,24 but sorting backfires and chokes off all sales.
Threshold Structure. Any sorting equilibrium with positive sales is a x̂-threshold market
outcome.

This threshold structure arises because the quality composition q(x) is non-increasing
(by Lemma 1). Then, if consumers visit x̂, they only visit locations downstream of x̂ if they
offer (weakly) lower prices.
Only Outlets: Neutral Equilibrium. Moving to part (ii) of the theorem, assume that
all visited locations are outlets. By Lemma 1 part (ii), quality composition is constant over
all (transit) locations. Since new inventory arrives with quality π, the quality composition
at all locations must also be π.25 Thus, the sorting equilibrium is neutral. As all consumers
make a purchase, the sorting equilibrium is also efficient. Given that the prices at all visited
locations are at most vl by the premise, the seller earns at most vl.
Active Sorting: Irrelevance Result. Finally, when consumers visit both outlet and non-
outlet locations, there is active sorting of products. I now illustrate why the payoff structure
is determined entirely by the quality at the outlet threshold q(x̂).
Consumer Payoff. If consumers visit both location types, their payoff is V B(p, σ,q) =

23To derive Equation (2), we differentiate (1−q(x))Sm(x). From Lemma 1 part (i), ∂x((1−q(x))Sm(x)) = 0
(a.e.) on [x1, x2]. Consumers only make a purchase when they draw high-quality goods (a.e.) on [x1, x2]:
∂xSm(x) = −σ(x)q(x). Together, these two imply:

∂x((1− q(x))Sm(x)) = −Sm(x)∂xq(x)− (1− q(x))q(x)σ(x) = 0.

Equation (2) follows.
24As outlets are not visited, they must have zero high-quality goods, or else consumers could obtain positive

payoff there.
25Formally, in the Appendix Lemma 3 shows that q is continuous at every transit location.
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q(x̂)(vh − vl).
The proof of this statement relies on consumer indifference between all visited locations.

Note that the outlet locations (by their definition) guarantee consumers a payoff of at least
q(x̂)(vh − vl).

On the other hand, as the quality composition is continuous on [0, x̂] (see Lemma 3),
consumers must visit some high-priced locations (upstream of x̂), whose quality composition
is arbitrarily close to q(x̂). But then the price at the outlet locations cannot be lower than
vl. Otherwise, there are some visited locations, where the quality is only marginally better,
but where the price is discontinuously higher. This violates consumer optimality. Then, the
only consumer payoff that is consistent with consumer optimality is exactly q(x̂)(vh − vl).
Total Surplus. The quality composition at the outlet threshold also determines the total
surplus in a sorting equilibrium. I show this in two steps. First, Lemma 2 shows that the
total surplus in a sorting equilibrium is as if only new products are drawn, but corrected for
the actual sales volume. Second, Proposition 1 establishes a monotone relationship between
the sorting precision and the sales volume.

Lemma 2. If m = (p, σ,q) is a sorting equilibrium, then the total surplus at m is given by:

TS(p, σ,q) =
(
πvh + (1− π)vl

)
Sm(0) (3)

To prove Lemma 2, consider the total surplus generated at outlet and non-outlet locations
separately. At outlet locations [x̂, 1), quality composition is constant at q(x̂) (σ-a.s.) by
Lemma 1, and consumers buy both product types. Thus, the total surplus generated at
outlets equals: [

q(x̂)vh + (1− q(x̂))vl
]
Sm(x̂).

At non-outlet locations (0, x̂), consumers only purchase high-quality goods. Thus, they
generate the surplus of

vh(Sm(0)− Sm(x̂)).

Summing these, we obtain that the total surplus generated on X is:

TS(p, σ,q) = vh(Sm(0)− Sm(x̂)) +
[
q(x̂)vh + (1− q(x̂))vl

]
Sm(x̂)

= vhSm(0)− (vh − vl)(1− q(x̂))Sm(x̂).

Finally, using Lemma 1, we may replace (1 − q(x̂))Sm(x̂) in the above with (1 − π)Sm(0),
which completes the proof of the lemma.

The proof uncovers the main reasons for the irrelevance result: sales generate both surplus
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and sorting of products. Consequently, any sorting precision is associated with a particular
sales volume. It does not matter what exact path the sorting takes, as in equilibrium, the
sales rate adjusts accordingly.
Sales Volume and Sorting Precision. The final step is to derive the equilibrium rela-
tionship between the sorting precision and total sales volume.

Proposition 1. Consider a x̂-threshold market outcome m = (q, σ,p) with positive total
sales Sm(0). If m is a sorting equilibrium, then:

Sm(0)

[
ln

(
π

1− π

1− q(x̂)

q(x̂)

)
(1− π) + 1

]
= 1. (Q-S)

Proof. See Appendix C.

Proposition 1 shows that the more precise the sorting (lower q(x̂)), the lower the total
number of sales. Figure 5a illustrates two sources of the sales loss as the sorting precision
increases. It compares two sorting equilibria with different sorting precisions (but the same
uniform consumer strategy).

As sorting becomes more precise, the outlet threshold moves downstream from x̂1 to x̂2,
increasing the share of consumers visiting high-priced locations. The resulting drop in sales
has two components. The first effect is direct (dotted area on Figure 5a): consumers drawing
goods in (x̂, x̂2) previously purchased both product types at low prices. Now, they only
purchase if they find high-quality goods.

Inventory is renewed more slowly with lower sales volume, and we get a second effect:
The quality composition worsens at all locations. Finding high-quality goods at high prices
gets more difficult, and the total sales decline further. I refer to this second effect as the
quality-composition effect (diagonally hatched area on Figure 5a).

Figure 5b shows that a greater sorting precision increases prices at non-outlet locations.
Like in the two-store example, we obtain an upward relationship between the prices charged
at non-outlet locations and their customer share, which resembles a Veblen effect. Price
discrimination by quality strengthens: conditional on sale, the price of the high-quality good
becomes higher.
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Figure 5: Effects of Greater Sorting Precision
Note: The figure compares two sorting equilibria with different sorting precisions. The two equilibria have
the same consumer strategy σ = 1, but different quality composition and prices. Figure 5a illustrates the
effects on the quality composition. By decreasing the share of outlet attention (moving from x̂1 to x̂2), the
sorting precision increases. The quality composition worsens across all locations. The shaded area shows the
resulting total sales loss: the dotted hatch represents the direct effect (fewer purchases at higher prices), and
the diagonal hatch captures the quality-composition effect (slower inventory turnover). Figure 5b illustrates
the price schedules in the two sorting equilibria.

4.3 Seller-Optimal Sorting

In this section, I solve the seller’s problem using the dimensionality reduction from Theorem 1.
I show that the seller-optimal sorting precision increases with the value of high-quality goods,
or their frequency at the production plant.

By Theorem 1, the seller’s problem reduces to selecting the sorting precision. Corollary 2
replaces the seller’s objective with Ṽ S(·):

Ṽ S(q) ≡ πvh + (1− π)vl

ln
(

π
1−π

1−q
q

)
+ 1

− q(vh − vl),

derived as a difference between the total surplus and consumer payoff.

Corollary 2. A sorting equilibrium (p, σ,q) is a solution to the seller’s problem if and only
if its outlet threshold q(x̂) solves:

max
q∈(0,π]

Ṽ S(q).
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When choosing the optimal sorting precision, the seller trades off inefficiency due to
lost sales against the ability to extract consumer surplus. The negative of the derivative,
−∂qṼ

S(q), quantifies the marginal cost and benefit of increasing sorting precision (i.e., low-
ering q). The first term reflects the rising inefficiency from lower sales volume; the second
captures the seller’s gain from extracting more consumer surplus.

−∂qṼ
S(q) =

Inefficiency︷ ︸︸ ︷
− πvh + (1− π)vl(

(1− π) ln
(

π
1−π

1−q
q

)
+ 1
)2 1− π

(1− q)q
+ (vh − vl)︸ ︷︷ ︸

CS Extraction

Figure 6 illustrates these two opposing forces. Sorting is costly at either extreme. Near
q ≈ π, sorting yields only second-order gains in price but first-order losses in efficiency. Near
q ≈ 0, the sorting becomes nearly perfect and causes sales to collapse. In the interior solution
q∗, the costs and benefits of sorting are balanced.

Active sorting is not always optimal. The seller may instead post a single low price vl

for all goods. If active sorting is optimal, then it is quite substantial: q∗ ≤ 0.5π (follows
from Lemma 11 in Appendix E). However, the seller never chooses the extreme of pricing all
goods at vh, since that yields no sales.

q∗ 0.5π π

vh − vl

Sorting Costs: Inefficiency

Sorting Benefits: CS Extraction
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Figure 6: Marginal Effects of Higher Sorting Precision

Note: the figure capture the marginal effects of product sorting. As product sorting rises (q decreases),
the seller benefits by capturing more consumer surplus. At the same time, the seller bears the sorting costs
due to inefficiency from foregone sales. If active sorting is optimally, then at the optimal outlet quality
composition q∗, the sorting costs cross the sorting benefits from above.

With this trade-off structure in mind, I analyze how the seller’s optimal sorting precision
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responds to changes in model parameters.

Proposition 2. The optimal quality composition at the outlet threshold decreases if

(i) vh increases,

(ii) or π ≈ 1 and increases.

Proof. See Appendix E.

Proposition 2 states that the optimal sorting precision rises when either high-quality items
become more valuable (part (i)) or very common (part (ii)). Part (i) is very intuitive: as
consumers value high-quality items more, the seller wants to raise prices. To do so, the seller
must aggravate the price/quality trade-off for the consumer by making sorting more precise.

Part (ii) of Proposition 2 is slightly more nuanced. When the probability of high-quality
rises, two effects compete. On the one hand, sorting becomes cheaper as finding high-quality
goods is relatively easy. On the other hand, it also becomes more costly in terms of the total
surplus lost. The first effect dominates when π is sufficiently high.

Together with Proposition 1, these results also imply that the total sales volume falls
and welfare losses rise in both cases listed in Proposition 2. Additionally, Proposition 2 (ii)
implies that the consumer’s payoff is decreasing in π when π is high.

Corollary 3. The consumer’s payoff at a seller’s optimal market outcome is decreasing in
π when π ≈ 1.

Intuitively, the seller extracts more consumer surplus from the buyer when the information
asymmetry decreases.

4.4 Direct Disposal Extension

This section extends the baseline model by allowing for the direct disposal of unsold inventory.
This extension captures a realistic alternative to markdowns for clearing low-quality goods. It
also lays the groundwork for comparing the baseline model to an alternative, vintage-based,
markdown process in Section 5. Proposition 3 shows that the seller uses only one channel to
clear low-quality goods from the stock in the optimum. She offers outlets if disposal costs
are high; otherwise, she disposes directly.

Assume the seller may destroy unsold inventory at some constant rate γ. The seller
bears per-unit disposal cost κ > 0. The interpretation of this cost is twofold. Either it is a
literal disposal cost, e.g., due to handling or transportation, or it is a per-unit production
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cost. Under the latter interpretation, the value vω of a product of type ω ∈ {h, l} is the
consumer’s valuation net of production costs.

The products are sent for disposal from the location at 1.26 This assumption allows us to
preserve the linear nature of the inventory reallocations. The overall structure of the model
stays the same, but location 1 now makes special “sales” at a negative price of −κ. We extend
the definition of the sorting equilibrium appropriately. As products now also move due to
disposal, the quality composition q in a sorting equilibrium (p, σ,q, γ) must now sustained
be sustained by (p, σ, γ).

Proposition 3 summarizes the main result for this version of the model: the seller clears
low-quality goods from the stock through one channel only.

Proposition 3. The seller clears low-quality goods from the stock through one channel only.
In particular for each (vh, vl, π), there exists a threshold disposal cost

κ̄ ∈
(
max
q∈(0,π]

Ṽ S(q)− vl,
π

1− π
vh
)
,

such that:

(i) if κ < κ̄, then in any optimal sorting equilibrium, there are no outlets,

(ii) if κ > κ̄, then in any optimal sorting equilibrium, there is no direct disposal, i.e., γ = 0.

In addition, as the value of a low-quality product vl increases, κ̄ decreases.

Proof. See Appendix F.

In words, the seller chooses the cheapest way to clear low-quality items from the stock. If
the disposal cost is relatively low, the seller destroys (some) of the unsold items. This lets the
seller maintain uniformly high prices (at vh) across all locations. Conversely, if disposal costs
are high, the seller prefers to offer outlets and delegate the removal of low-quality products to
consumers. The bounds on κ̄ imply sufficient conditions for when each channel is preferred.

When low-quality items are more valuable, the seller is more likely to have low-priced
locations. To illustrate, consider the extreme case where vl → vh. Then, the salvage value
of any product is too high, and the seller does not destroy any goods.

Proposition 3 also clarifies the types of products for which the model is most applicable.
Markdowns are most relevant for products that: (i) have highly uncertain demand; (ii) are
not easily scalable, so that the seller uses sales information for markdowns but not to adjust
production; and (iii) have sizable marginal costs, which make direct disposal less attractive
than clearance sales.

26For simplicity, location 1 is not available for visiting by consumers.
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5 Vintage-Based Pricing

This section introduces a vintage-based markdown process, where a product’s price depends
directly on its time in inventory. Despite the change in pricing mechanics, vintage-based
pricing yields the same steady-state equilibrium outcomes as the benchmark model.

As argued above, the pricing process in the baseline model is inventory-driven, and best
applies to spatial implementations of markdowns. An alternative markdown process, that
mirrors Filene’s strategy more closely, is based on the current product’s vintage. To model
this, I assume that the seller has a limited time horizon for selling each unit of her goods.
If the product is not sold by reaching this deadline, the seller must dispose of it directly at
a per-unit cost κ > 0. Since I don’t have time depreciation in my model, we can normalize
this deadline to 1: X ∈ [0, 1] now represents the vintage of the goods in the seller’s stock.
Consumers’ choice remains the same: only now they split their attention between different
product vintages.

The key difference between the two models lies in how inventory is distributed. Unlike
in the benchmark model, where each location holds a fixed number of inventory, the number
of unsold goods now varies across vintages. Let µ : X → R+ denote inventory density
across vintages. A vintage-based market outcome is a tuple (p, σ, µ,q) consisting of prices,
consumer strategy, inventory distribution, and quality composition.

We adjust the sorting equilibrium definition accordingly to account for the endogeneity of
stock distribution across vintages. A vintage-based sorting equilibrium is a market outcome
(p, σ, µ,q) such that: (i) prices and consumer strategy (p, σ) sustain the inventory distribu-
tion µ and quality composition q; and (ii) σ maximizes consumer payoff given (p,q). For
formal details, see Appendix G.

Theorem 2 establishes equivalence of the two models.

Theorem 2. (p, µ, σ,q) is a vintage-based sorting equilibrium if and only if (p, σ,q, γ) is a
sorting equilibrium for the disposal rate γ = µ(1).

Proof. See Appendix G.

The equivalence follows from observing that products of any vintage x are either sold to
consumers or disposed of. But then the mass of the vintages x is the same as the downstream
sales at x in the original model.27

In both models, goods get repriced at the rate of downstream sales. In the baseline
model, these rates of price changes were imposed exogenously. Under vintage-based pricing,

27After we include the special sales at a negative price at location 1, as discussed in the previous section.
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it emerges endogenously due to the steady-state restrictions of the equilibrium. Consequently,
we get the exact same predictions for the sustained quality compositions.

6 Extensions and Discussion

This section discusses the limitations of the baseline model and introduces three extensions
that address some of them. Section 6.1 examines whether the seller can achieve her optimal
payoff with only finitely many visited locations, allowing for more general consumer strategies
with atoms. Section 6.2 introduces multiple quality levels to capture richer forms of demand
uncertainty. This extension reconciles the coexistence of markdowns and disposal, which
the binary-quality model rules out. Section 6.3 incorporates heterogeneous consumers with
vertically differentiated preferences for quality. For brevity, formal details of these extensions
are presented in the Appendices.

6.1 Atoms in the Consumer Strategy

In this section, I generalize the model with disposal to richer shopping strategies. I show
that the seller strictly benefits from operating an infinite number of locations.

Let the consumer strategy be described by a cdf D : [0, 1] → [0, 1], where D(x) denotes
the share of consumers who draw products in (0, x]. Unlike the baseline model, D may now
have atoms, allowing some locations to attract discrete mass of attention.

We may now investigate whether the seller must operate so many locations to price-
discriminate by binary quality. Proposition 4 shows that the seller cannot achieve her optimal
payoff if she strictly prefers active sorting equilibria (to neutral sorting).

Proposition 4. If D admits finitely many discontinuities at non-outlet locations, then the
sorting equilibrium (p, D,q, γ) is suboptimal for the seller.

In words, it is unprofitable for the seller to have a high-priced location with a large
customer share. Intuitively, if there is an atom at some non-outlet location, the seller’s
learning is “bunched”. She misses some of the sorting and repricing opportunities.

To illustrate, suppose only two locations are visited: x = 1/3 and x = 2/3, with the
latter an outlet. In this case, sorting fails entirely: the average quality is the same at both
locations. This reflects a property of the continuous-time model: consumer purchases are
infinitesimal relative to inventory, so that there can be no sorting within a single store at
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1/3.28

This result underscores another distinction between price discrimination by quality and
monopolistic screening. When screening consumer types, the seller only needs one menu item
per consumer type. In contrast, when sorting product types, the seller prefers a continuum
of locations, even if product quality is binary.

6.2 Multiple Quality Levels

Section 4.4 shows that in the binary quality model, direct disposal and markdowns are
mutually exclusive: the seller clears low-quality goods using only one method. To better
reflect real-world practices, this section extends the model to allow for products with multiple
quality levels.

Suppose the product comes in n quality levels, yielding consumer values v1 < v2 < · · · <
vn. As in the baseline model, consumer strategy admits a density over X. The quality
composition is now defined as q : {1, . . . , n}× [0, 1] → [0, 1], where q(i|x) is share of quality-i
goods at location x’s stock.

Proposition 7 (Appendix A) generalizes the threshold structure of the sorting equilibrium.
Now, each sorting equilibrium features up to n thresholds, where the price schedule crosses
one of the products’ possible values {vi}ni=1. With richer quality structure, markdowns and
direct disposal can coexist: the seller may choose to clear some quality levels through reduced
prices, while disposing of the least valuable items directly.

To illustrate, suppose there are three quality levels and the lowest has no value to con-
sumers: v1 = −κ. Then, sales of quality-1 do not recover any of the production costs. But
clearing it through sales requires transferring more surplus to the buyer and reducing trans-
action prices for all other qualities. Direct disposal of quality-1 items is therefore optimal.
At the same time, if v2 is sufficiently high, then the seller prefers to clear it through sales to
recover her production costs.

Proposition 10 in the Online Appendix also formulates a version of the irrelevance result
for the model with multiple qualities. Fixing the disposal rate and the set of product qualities
cleared through sales, the seller’s problem remains one-dimensional: she is indifferent across
all sorting equilibria that deliver the same consumer surplus. The role of prices remains
limited even with multiple quality levels.

28This differs from the two-store numerical example, where time is discrete, so that there is a sizable
difference between initial and post-sales quality distribution at the flagship.
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6.3 Heterogeneous Consumers

This section extends the baseline model to allow for vertically differentiated consumers. Con-
sumers differ in their valuation of high-quality goods, and the seller uses different locations
to segment them. Sorting emerges not only across products but also across consumer types.
Outlet locations now serve a dual role: clearing low-quality inventory and segmenting con-
sumers with low willingness to pay.

Suppose the product has binary quality, as in Section 3, but consumers vary in their
willingness to pay for high quality. A consumer of type θ ∈ Θ = [vl, vh] values a high-quality
item at θ and a low-quality item at vl. The distribution of types admits a positive density
f(·) over the whole support Θ, with F (·) denoting the cdf.

Each consumer type θ chooses a location to visit and draws a product from there. Let
x : Θ → X denote the consumer strategy, mapping each type to a distinct location (x is
injective). Expected payoff of type-θ consumer in a market outcome (p,x,q) is:

V B(p,x,q|θ) = q(x(θ))(θ − p(x(θ)))+ + (1− q(x(θ)))(vl − p(x(θ)))+,

The consumer strategy x is optimal if no consumer type wants to deviate to another
location, given prices and the quality composition. Formally, for every θ ∈ Θ and every
x ∈ X, the market outcome satisfies incentive compatibility (IC):

V B(p,x,q|θ) ≥ q(x)(θ − p(x))+ + (1− q(x))(vl − p(x))+ (IC)

Sorting Equilibria. Proposition 5 shows how the threshold structure of the sorting equi-
libria generalizes to the model with heterogeneous consumers.

Proposition 5. For every equilibrium market outcome with positive sales, there exists a
threshold outlet shopper θ̂ ∈ (vl, vh] such that all types in (θ̂, vh] shop at non-outlet locations;
and types in [vl, θ̂) shop at outlet locations. In addition, x is decreasing on [θ̂, vh].

Proof. See Appendix I.

Consumers self-sort across locations in a descending order. Higher types visit upstream
locations with better quality and higher prices. The proof follows from the standard mono-
tonicity arguments for IC-allocations.
Irrelevance Result. The equilibrium payoffs mirror those of the monopolistic screening
model (Mussa and Rosen (1978)), but with an important twist: the seller cannot choose
qualities in the menus directly, only induce them via sorting. And just as in the baseline
model, sorting can be fully described by what happens at the threshold.
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In particular, Lemma 14 (Appendix I) shows that for every threshold outlet shopper
θ̂ ∈ (vl, vh], there exists a unique induced quality allocation Qθ̂ : [θ̂, vh] → [0, 1], such that
q(x(θ)) = Qθ̂(θ),∀θ ∈ [θ̂, vh]. This is because, fixing outlet shopper θ̂, the quality composition
at each location depends only on the mass of consumers visiting upstream locations. By
Proposition 5, for location x(θ) this mass equals 1− F (θ), which is exogenously given.
Seller’s Problem. As before, the seller chooses a sorting equilibrium to maximize her profit
flow:

V S(p,x,q) =

∫
vl<p(x(θ))≤θ

p(x(θ))q(x(θ))f(θ)dθ +

∫
p(x(θ))≤vl

p(x(θ))f(θ)dθ.

Due to Proposition 5, the seller’s problem reduces to segmenting consumer types between
outlet and non-outlet locations by selecting θ̂.

Proposition 6. A sorting equilibrium (p,x,q) with a threshold outlet shopper θ̂ is seller-
optimal if and only if:

θ̂ ∈ argmax
θ̂∈(vl,vh]

∫ vh

θ̂

Qθ̂(θ)

(
θ − 1− F (θ)

f(θ)

)
dF (θ) + F (θ̂)vl −Qθ̂(θ̂)(θ̂ − vl)(1− F (θ̂)).

Proof. See Appendix I.

Consumer segmentation serves a dual role: it both determines who receives the low price
and pins down the entire menu of quality-price pairs offered upstream.

6.4 Future Directions

In this section, I highlight some of the questions that fall outside the scope of this paper but
offer promising avenues for future research.
Quality Depreciation. So far, I have assumed that the preferences for any particular
product remain constant over time. But in real life, even popular designs lose customer appeal
with time. For instance, in the apparel industry, this may happen due to the seasonality of
products. Within this paper, one could accommodate time depreciation by assuming that,
with some probability, a unit of unsold high-quality inventory loses its value and becomes of
low quality.

With time depreciation, the irrelevance result for the continuous model no longer holds.
The seller gets a new leverage for sorting products through their exogenous deterioration and
must balance a new trade-off. The seller can “speed up” turnover and dampen the effect of
depreciation by increasing the customer share of the earlier locations. By doing so, the seller
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improves the average quality composition and increases sales volume at high-priced locations
but prevents the goods from getting damaged before reaching outlets.
Other Pricing Processes and Product Flows. My model greatly constrains how the
seller leverages information from sales. As argued in the introduction, this assumption may
be justified by the high cost of more nuanced pricing strategies for large inventory volumes.
Nevertheless, the model leaves the question of optimal pricing and product reallocation open.
In particular, would the seller benefit from non-linear reallocation of goods? Could the seller
benefit from having two separate, independent lines of stores? Should the seller merge outlets
for her different brand lines? Given the tractability model, these directions seem promising
within the suggested framework.
Richer Market Structures. Theorem 1 characterizes sorting equilibria for all possible
prices, not just the optimal ones. In particular, it applies to richer strategic environments
where different sellers manage different prices. In future research, the model could be ex-
tended to allow for upstream and downstream sellers to explore whether inefficiency exacer-
bates with multiple sellers setting prices.
Frequency of Replenishment. The frequency of inventory replenishment offers another
strategic tool for the seller to enhance product sorting efficiency. Exploring the impact
of replenishment frequency, particularly in scenarios where stock-outs occur, could provide
additional valuable insights.

7 Related Literature

This paper builds on the classic model of markdown pricing by Lazear (1986): a seller
gradually lowers the price of a good with unknown consumer value, and short-lived consumers
arrive gradually. In that setting, the good is produced once, and the seller can extract the
entire surplus by waiting long enough. In my model, learning through the lack of sales is
costly: unsold goods slow the arrival of new inventory, which is more likely to be high-value.
Moreover, with many goods, consumers also make a strategic choice over which goods to
inspect. The paper thus offers an equilibrium model of markdowns.

The paper also contributes to the dynamic pricing literature (e.g., Gallego and Van Ryzin
(1994), Den Boer (2015), Elmaghraby and Keskinocak (2003), Board and Skrzypacz (2016),
Dilme and Li (2019)). In these papers, dynamic prices screen consumers. In mine, they sort
products. Methodologically, I differ by focusing on a steady-state equilibrium that reduces
the dynamic pricing to a static model.

Prices also serve as signals of expected quality, in the spirit of Wolinsky (1983), Bagwell
and Riordan (1991), Delacroix and Shi (2013). However, the source of information is funda-
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mentally different. These papers study informed sellers who use prices to communicate their
private information. In contrast, my seller is uninformed, and prices become informative
endogenously through the equilibrium sales process.

The sorting mechanism relates to the literature on learning from sales. Bergemann and
Välimäki (1997), Bergemann and Välimäki (2000), Bergemann and Välimäki (2006), Bonatti
(2011) assume a model of the seller who learns about the product by making sales, and
the amount of information increases with the sales volume. Bose et al. (2006), Bose et al.
(2008) study dynamic pricing models with information cascades driven by observed purchase
history. In contrast, my model makes the absence of purchase a key source of information.
This distinction introduces a novel trade-off between sorting precision and sales volume.

The equilibrium model is related to general equilibrium models of directed search with
adverse selection (see Guerrieri, Julien, and Wright (2017) for a review). One side of the
market has superior information about the match value, and the other chooses the terms of
trade. The informed side of the market then sorts across the offered contract. In equilibrium,
the terms of contracts get balanced against the probability of matching. In my model,
consumers sort themselves and the products across different prices. The resulting trade-off
in consumer search lets the seller price-discriminate the goods by quality. Lauermann and
Wolinsky (2017) studies how well prices aggregate information in markets with search and
adverse selection.

Inventory management under uncertain demand is studied extensively in operations and
marketing literature. Some papers focus on how sellers learn and adjust production over
time (see Silver, Pyke, and Thomas (2016) for a review). Others explore dynamic demand,
where sales influence future outcomes directly (through contagion) or indirectly (through
inference) (e.g., Hartung (1973), Petruzzi and Monahan (2003), Caro and Gallien (2007)).
These models often treat demand as exogenous and abstract from consumer learning. The
most closely related work is an empirical paper by Ngwe (2017), studying the joint pricing
and inventory choice problem across a flagship and an outlet for consumer segmentation. Like
my model, Ngwe (2017) assumes constant capacity and inventory flow from production to
flagship to outlet. However, the model abstracts from consumer search and does not consider
how markdowns facilitate indirect quality-based price discrimination.

Methodologically, this paper belongs to the literature on steady-state mechanism design,
as in Madsen and Shmaya (2024) and Baccara, Lee, and Yariv (2020).
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Appendices

This section includes the appendices for the continuous model. It covers the versions of the
model covered in Section 3 - Section 6.

Appendix A formulates the most general version of the model with homogeneous con-
sumers. Appendix B includes all the proofs for this general model. Appendix C specializes
to binary quality, and covers proofs for the benchmark model, direct disposal model, and a
general shopping strategy model. Appendix E provides details and proofs for the reduced
seller’s problem for Section 4.3. Appendix OA2 analyzes the model with multiple qualities.
Appendix I formalizes and analyzes the model with heterogeneous consumers.

A General Model

In this section, I formally describe the most general version of the continuous model, which
allows buyers to have a more general shopping strategy, allows for direct disposal, and con-
siders multiple quality tiers.

Quality Levels. The product comes in one of n possible qualities. Each consumer gets
utility vi + κ from a product of quality i, where κ is the seller’s per-unit production cost
(uniform across quality types). For notational simplicity, the qualities are ordered so that:
v1 < v2 < · · · < vn. In addition, it will be useful to define a fictitious product 0: v0 = −∞.
Locations and Disposal. The seller manages a continuum of locations X = (0, 1]. 0 is the
production plant, and 1 is a warehouse. Neither of these two can be visited by the consumers.
The total stock of mass 1 is distributed uniformly across (0, 1]. The products from location
1 are destroyed at a constant rate γ ≥ 0.
Prices and Quality Composition. The quality composition is described by q : {1, . . . , n}×
X → [0, 1], with q(i|x) denoting the share of quality-i goods in the total stock of location
x. The quality composition at the production plant is given exogenously: q(i|0) = π(i) for
some {π(i)}ni=1. The seller produces each quality i with a positive probability π(i) ∈ (0, 1).
p : X → R summarizes the price schedule for locations in X. p(x) is the price the seller
receives conditional on purchase at location x, net of her replacement cost κ > 0. Both p(·)
and every q(i|·) are Lebesgue-measurable.
Consumers. Consumers who visit at location x, draw a single product at random according
to distribution {q(i|x)}ni=1. If a consumer purchases the product of quality i at a price p, he
gets a payoff of vi − p. As before, the consumer buys the good whenever its value is weakly
above the price.

The consumer strategy by the consumers is summarized by a cdf D : [0, 1] → [0, 1]. To
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clarify, D(x) denotes the mass of consumers drawing their good at the locations weakly below
x.29 Define δ : X → [0, 1] to be the size of an atom at location x: δ(x) = D(x) − D(x−).
Location x is visited if the consumer strategy D(·) is strictly increasing at x.30

Consumer payoff at a market outcome m = (p, D,q, γ) is:

V B(p, D,q, γ) =

∫
x∈X

n∑
i=1

q(i|x)(vi − p(x))+dD(x)

Sustained Quality Composition. The products move due to purchases, downstream
reallocations, and disposal. For every market outcome m, the purchasing probability ρm :

X → [0, 1] at a location x is the total probability of drawing a good with the value above
the x’s price:

ρm(x) =
n∑

i=1

1{p(x) ≤ vi}q(i|x),

For downstream reallocations, goods pass at the rate of downstream sales Sm : [0, 1] → [0, 1],
that include fictitious sales from location 1 of size γ:

Sm(x) =

∫
y>x

ρm(x)dD(x) + γ1{x < 1}.

The seller picks the goods for downstream reallocations from any location x at random.
On the interval (x1, x2], the outflow of products of quality i includes all purchases of this
quality, and the products of this quality are reallocated downstream from x2. The inflow of
quality i equals the mass of quality i products reallocated downstream from x1. The share
of quality i stays in the stock of locations (x1, x2] stays constant over time when its outflows
and inflows are balanced:∫

y∈(x1,x2],p(y)≤vi
q(i|y)dD(y) + Sm(x2)q(i|x2) = Sm(x1)q(i|x1) (4)

The quality composition q is sustained by prices, consumer strategy and disposal rate
(p, D, γ) on some subset of locations Y ⊆ X, if Equation (4) holds for each quality i ∈
{1, . . . , n} and each (x1, x2] ⊆ Y .

Sorting Equilibrium. A market outcome m = (p, D,q, γ) is a sorting equilibrium if
29Given that D is a cdf over [0, 1], I implicitly assume that it is increasing, D(0) = 0, D(1) = 1. In addition,

D is continuous on the right with a limit on the left (corlol) on [0, 1]. In addition, since both the location 1
is not available for consumers, D is continuous at 1.

30That is, for every ∆ > 0: D(x)−D(x−∆) > 0.
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(i) the quality composition q is sustained by (p, D, γ),

(ii) each visited location x maximizes consumer expected payoff:

n∑
i=1

q(i|x)(vi − p(x))+ = max
y∈X

n∑
i=1

q(i|y)(vi − p(y)).

In the remainder of the Appendix, I slightly abuse the notation and write (p, σ,q, γ) to
denote a market outcome where the shopping strategy of a consumer admits a density σ, or
write (p, D,q) to denote a market outcome where γ = 0.
Seller. The seller’s profit flow from a market outcome m = (p, D,q, γ) is:

V S(p, D,q, γ) =

∫
x∈(0,1)

p(x)dSm(x)− γκ

B Proofs for the General Model

In this appendix, I analyze the general model of Appendix A.

Properties of Sustained Quality Compositions. I begin the analysis by characterizing
the restrictions on the quality compositions that can be sustained in some sorting equilibrium.
Lemma 3 establishes the basic continuity properties of such quality compositions.

Lemma 3. Consider a market outcome m = (p, D,q, γ). q is sustained by (p, D, γ) only if
it satisfies the following:

(i) if Sm(x) > 0, then for every i, q(i|·) is right-continuous at x, and is continuous at x if
D is continuous at x,

(ii) if p(x) ≤ v1 or p(x) > vn, then q(i|·) is left-continuous at x whenever Sm(x−) > 0,

(iii) if p(x) > vi, then Sm(·)q(i|·) is continuous at x,

(iv) if p(x) < vi and D is discontinuous at x, then q(i|x) < q(i|x−) whenever q(i|x−) > 0

and ρm(x) < 1.

Proof. Suppose that q is sustained by (p, D, γ) on X. Then, Equation (4) holds for every
(x1, x2] ⊆ (0, 1).

Part (i). Take an interval (x, x+∆], then we must have:

−
∫
y∈(x,x+∆],p(y)≤vi

q(i|y)dD(y) + Sm(x)q(i|x)− Sm(x+∆)q(i|x+∆) = 0.
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If q is sustained by (p, D, γ) on X, the above must hold for any x ∈ (0, 1) and ∆ > 0. We
can take ∆ to be arbitrarily small. Note that

∫
y∈(x,x+∆],p(y)≤vi

q(i|y)dD(y) converges to 0 by
the Squeeze Theorem:

0 = lim
∆→0

∫
y∈(x,x+∆]

1dD(y) ≥
∫
y∈(x,x+∆],p(y)≤vi

q(i|y)dD(y) ≥ 0.

where the equality is due to D being right-continuous at every x ∈ X. Hence, q is sustained
by (D,p, γ) on X only if:

Sm(x)q(i|x) = lim
∆→0

Sm(x+∆)q(i|x+∆).

By the definition of downstream sales, Sm is right-continuous at every x. Then, to satisfy the
above equation, q(i|x) must also be right-continuous at every location x, where Sm(x) > 0.
Analogously, we can show that if D is left-continuous at x, then q(i|x) must be left-continuous
if Sm(x) > 0.

Part (ii). Suppose p(x) ≤ v1. We impose Equation (4) on the interval (x−∆, x]:

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) =
∫
y∈(x−∆,x],p(y)≤vi

q(i|y)dD(y).

By the premise of the lemma’s part, p(x) ≤ v1, so that all goods are purchased from x:
ρm(x) = 1. This lets us rewrite the above in the form:

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) = q(i|x) (Sm(x−∆)− Sm(x))

+

∫
y∈(x−∆,x),p(y)≤vi

(q(i|y)− q(i|x)) dD(y)

−
∫
y∈(x−∆,x),p(y)>v1

q(i|x)(1− ρm(y))dD(y).

which simplifies to:

Sm(x−∆)(q(i|x−∆)− q(i|x)) =
∫
y∈(x−∆,x),p(y)≤vi

(q(i|y)− q(i|x)) dD(y)

−
∫
y∈(x−∆,x),p(y)>v1

q(i|x)(1− ρm(y))dD(y).

If q is sustained by (D,p, γ) on X, this holds for every x and every ∆ > 0. As ∆ → 0, the
right-hand side is converging to 0, since |q(i|y)−q(i|x)| and q(i|x)(1−ρm(y)) are at most 1.
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Then, whenever q is sustained by (p, D, γ) on X, we must have :

Sm(x−∆)(q(i|x−∆)− q(i|x)) →
∆→0

0.

That is, unless Sm(x−) = 0, q(i|·) is left-continuous at x. The proof for the case p(x) > vn

is analogous.
Part (iii). Suppose that p(x) > vi: quality i is not purchased at x. Then, Equation (4) on
(x−∆, x] is equivalent to:

=

∫
p(x)≤vi,y∈(x−∆,x)

q(i|y)dD(y).

Taking arbitrarily small ∆, the right-hand side converges to 0. Then, we have:

lim
∆→0

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) = 0.

That is, Sm(·)q(i|·) is left-continuous at x. Sm(·) is right-continuous, and q(i|·) is right-
continuous by part (i) whenever Sm(x) > 0. Together, these deliver continuity of Sm(·)q(i|·)
at x.

Part (iv). Suppose that p(x) < vi: quality i is purchased at x. Equation (4) is satisfied for
the interval (x−∆, x] whenever:

Sm(x−∆)q(i|x−∆)− Sm(x)q(i|x) =
∫
p(x)≤vi,y∈(x−∆,x]

q(i|y)dD(y)

= δ(x)q(i|x) +
∫
p(x)≤vi,y∈(x−∆,x)

q(i|y)dD(y)dy

Taking the limit of both sides as ∆ → 0, we obtain:

Sm(x−)q(i|x−)− Sm(x)q(i|x) = δ(x)q(i|x)

As p(x) ≤ vi, then Sm(x−) = δ(x)ρm(x) + Sm(x) and the above implies:

q(i|x) = q(i|x−)
δ(x)ρm(x) + Sm(x)

δ(x) + Sm(x)
.

δ(x)ρm(x)+Sm(x)
δ(x)+Sm(x)

is strictly lower than 1 whenever q(i|x−) > 0 and ρm(x) < 1.

Lemma 4 summarizes the key sorting restrictions. If a quality is not purchased over a
certain interval, its mass in downstream reallocations remains constant during that interval.
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In addition, there is only some sorting for any two qualities if consumer purchasing decisions
are different across these qualities.

Lemma 4. Consider a market outcome m = (p, D,q, γ). Suppose that p(x) ∈ (vi, vi+1)

D-a.s. on [x1, x2], and Sm(x2) > 0. Then, q is sustained by (p, D, γ) on [x1, x2] only
if Sm(·)q(l|·) is constant over [x1, x2] for every l ≤ i. In addition, whenever either D is
continuous on [x1, x2], or i = 0, q is sustained by (p, D, γ) on [x1, x2] if and only if:

(i) for every l ≤ i, Sm(·)q(l|·) is constant over [x1, x2],

(ii) for every l > i, q(l|·)∑
k>i q(k|·)

is constant over [x1, x2].31

Proof. Note that q is sustained by (p, D, γ) over [x1, x2] whenever for any x ∈ (x1, x2], any
(x−∆, x] ⊆ [x1, x2] and ∀l ∈ {1, . . . , n}:∫

y∈(x−∆,x],p(y)≤vl
q(l|y)dD(y) = Sm(x−∆)q(l|x−∆)− Sm(x)q(l|x). (5)

Only if and part (i). Take any quality type l ≤ i, which is not purchased over [x1, x2].
Then,

∫
y∈(x−∆,x],p(y)≤vl

q(l|y)dD(y) = 0, and Equation (5) holds if and only if:

Sm(x−∆)q(l|x−∆) = Sm(x)q(l|x)

As the above must hold for every (x−∆, x] ⊆ [x1, x2], this is equivalent to Sm(·)q(l|·) being
constant over [x1, x2].

Part (ii). First, let me show the only if direction. Fix some product quality l > i (purchased
a.e. on [x1, x2]) and assume by way of contradiction that there exists a pair of locations
x̃1 < x̃2, where q(l|x̃1)∑

k>i q(k|x̃1)
> q(l|x̃2)∑

k>i q(k|x̃2)
(the other case is symmetric).

By Lemma 3, q(k|·) is continuous for every k ∈ {1, . . . , n} on [x1, x2] under the premise
of the additional part of the lemma. Then, there exists some ỹ1 < x̃2, such that for all
y ∈ (ỹ1, x̃2],

q(l|ỹ1)∑
k>i q(k|ỹ1)

> q(l|y)∑
k>i q(k|y)

.32 q is sustained by (D,p, γ) over (ỹ1, x̃2] only if:

0 = −
∫
y∈(ỹ1,x̃2],p(y)≤vl

q(l|y)dD(y) + Sm(ỹ1)q(l|ỹ1)− Sm(x̃2)q(l|x̃2)

By the premise of the lemma, p(·) ∈ (vi, vi+1) (D-a.s.) on [x1, x2]: (D-a.s.), the purchasing
probability is ρm(·) =

∑
k>i q(k|·), the probability that the quality is above i. We can rewrite

31With a convention that q(j|x)∑
k>i q(k|x)

= 1 when
∑

k>i q(k|x) = 0.
32For instance, we may take ỹ1 = sup

{
y : q(l|y)∑

k>i q(k|y)
= q(l|x̃1)∑

k>i q(k|x̃1)

}
.
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the above equation as:

0 = −
∫
y∈(ỹ1,x̃2],p(y)∈(vi,vi+1)

q(l|y)∑
k>i q(k|y)

ρm(y)dD(y) + Sm(ỹ1)
∑
k>i

q(k|ỹ1)
q(l|ỹ1)∑
k>i q(k|ỹ1)

− Sm(x̃2)
∑
k>i

q(k|x̃2)
q(l|x̃2)∑
k>i q(k|x̃2)

By our premise q(l|y)∑
k>i q(k|y)

< q(l|ỹ1)∑
k>i q(k|ỹ1)

for all y ∈ (ỹ1, x̃2], then we have:

0 > − q(l|ỹ1)∑
k>i q(k|ỹ1)

(Sm(ỹ1)− Sm(x̃2)) + Sm(ỹ1)
∑
k>i

q(k|ỹ1)
q(l|ỹ1)∑
k>i q(k|ỹ1)

− Sm(x̃2)
∑
k>i

q(k|x̃2)
q(l|x̃2)∑
k>i q(k|x̃2)

= − q(l|ỹ1)∑
k>i q(k|ỹ1)

∑
k≤i

q(k|ỹ1)Sm(ỹ1) +
q(l|x̃2)∑
k>i q(k|x̃2)

∑
k≤i

q(k|x̃2)Sm(x̃2)

+ Sm(x̃2)

(
q(l|ỹ1)∑
k>i q(k|ỹ1)

− q(l|x̃2)∑
k>i q(k|x̃2)

)
.

From part (i), we can replace
∑

k≤i q(k|ỹ1)Sm(ỹ1) with
∑

k≤i q(k|x̃2)Sm(x̃2) to get:

0 >

(
q(l|x̃2)∑
k>i q(k|x̃2)

− q(l|ỹ1)∑
k>i q(k|ỹ1)

)∑
k≤i

q(k|x̃2)Sm(x̃2) + Sm(x̃2)

(
q(l|ỹ1)∑
k>i q(k|ỹ1)

− q(l|x̃2)∑
k>i q(k|x̃2)

)

= Sm(x̃2)

(
1−

∑
k≤i

q(k|x̃2)

)(
q(l|ỹ1)∑
k>i q(k|ỹ1)

− q(l|x̃2)∑
k>i q(k|x̃2)

)
.

Finally, by our premise, q(l|ỹ1)∑
k>i q(k|ỹ1)

> q(l|x̃2)∑
k>i q(k|y)

. We obtain a contradiction: 0 > 0.

To prove the if direction, suppose that q(l|y)∑
k>i q(k|y)

remains constant over [x1, x2]. We now
check that Equation (5) is satisfied for every (x−∆, x] ⊆ [x1, x2]:∫

y∈(x−∆,x],p(y)∈(vi,vi+1)

q(l|y)∑
k>i q(k|y)

ρm(y)dD(y) + Sm(x−∆)q(l|x−∆)− Sm(x)q(l|x)

= − q(l|x)∑
k>i q(k|x)

(Sm(x−∆)− Sm(x)) + Sm(x−∆)
∑
k>i

q(k|x−∆)
q(l|x)∑
k>i q(k|x)

− Sm(x)
∑
k>i

q(k|x) q(l|x)∑
k>i q(k|x)

=
q(l|x)∑
k>i q(k|x)

[
Sm(x)

∑
k≤i

q(k|x)− Sm(x−∆)
∑
k≤i

q(k|x−∆)

]
.
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By the lemma part (i), Sm(x)
∑

k>i q(k|x) − Sm(x −∆)
∑

k>i q(k|x −∆), and hence Equa-
tion (5) is satisfied.

Sales Collapse. Lemma 5 formalizes the general result: if quality i is never purchased or
never destroyed, the sales collapse in the sorting equilibrium. The intuition is the same as in
the binary quality. When not cleared from the stock, any quality crowds out all higher-quality
items.

Lemma 5. Consider a market outcome m = (p, D,q, γ), such that p(x) > vi for all x < x̂

(D-a.s.) and Sm(x̂−) = 0. If m is a sorting equilibrium, then the sales collapse: Sm(0) = 0.

Proof. Suppose the statement of the lemma is not true. Sm(x̂−) = 0, but the total sales are
positive: Sm(0) > 0. Then, by Lemma 4 part (i), Sm(x)q(i|x) is constant on (0, x̂) and is
right-continuous at 0 by Lemma 3 (i) and right-continuity of Sm(·).

Then, we must have:

Sm(0)π(i) = lim
x→0

Sm(x)q(i|x) = Sm(x̂−)q(i|x̂−) = 0.

By assumption, π(i) ∈ (0, 1), and we obtain a contradiction.

Imperfect Sorting. Lemma 6 states that the seller can never perfectly discover the quality
type in a sorting equilibrium with positive sales. She always makes some mistakes when
reallocating the goods downstream.

Lemma 6. Consider a market outcome m = (p, D,q, γ) with p(x) > vi for all x < x̂. If m
is a sorting equilibrium with positive sales, then

∑
k≤i q(k|x̂−) < 1.

Proof. Suppose the statement of the lemma is not true. First, assume that there exists some
upstream location x < x̂, where the discovery of lower qualities is perfect:

∑
k≤i q(k|x) = 1.

Let x̃ be the first such location:

x̃ = inf{x < x̂ :
∑
k≤i

q(k|x) = 1}.

Step 1.1:
∑

k≤i q(k|x) = 1 for all x ∈ [x̃, x̂). By Lemma 4, q is sustained by (p, D, γ) only if∑
k≤i q(k|x)Sm(x) remains constant over [0, x̂). By the premise of the lemma, total sales are

positive, Sm(0) > 0. Then, by Lemma 5, x̂ has positive downstream sales: Sm(x̂−) > 0. As
downstream sales are non-increasing, and

∑
k≤i q(k|x)Sm(x) remains constant,

∑
k≤i q(k|·)

is non-decreasing on [0, x̂). Then,
∑

k≤i q(k|x) = 1 on (x̃, x̂). In addition, as Sm(x̂−) > 0, by
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Lemma 3 part (i), q is right-continuous on [0, x̂). Then, by the definition of x̃,
∑

k≤i q(k|x̃) =
1.
Step 1.2:

∑
k≤i q(k|·) is continuous at x̃ . Suppose not. By Lemma 3 part (i), D admits

an atom at x̃. If
∑

k≤i q(k|x) is discontinuous at x̃, then it must have an upward jump at
x̃:
∑

k<i q(k|x̃−) < 1 (as
∑

k≤i q(k|·) is non-decreasing on [0, x̂) from the proof of Step
1.1). But if

∑
k≤i q(k|x̃) = 1 and p(x̃) > vi, location x̃ makes no sales. In this case,

Sm(·) is continuous at x̃. By Lemma 3 (iii), Sm(·)
∑

k≤i q(k|·) is continuous at x̃. We
get a contradiction:

∑
k≤i q(k|x)Sm(x) makes an upward jump at x̃, where it must remain

constant.

Step 1.3. Using
∑

k≤i q(k|x)Sm(x) is constant over [0, x̂] and
∑

k≤i q(k|x̃) = 1:∑
k≤i

q(k|x̃−∆)Sm(x̃−∆) =
∑
k≤i

q(k|x̃)Sm(x̃) = Sm(x̃)

for any x̃ > ∆ > 0. Then, for any such ∆:

1∑
k≤i q(k|x̃−∆)

=
Sm(x̃−∆)

Sm(x̃)
= 1 +

∫
y∈(x̃−∆,x̃]

ρm(y)dD(y)

Sm(x̃)
.

As p(·) > vi on (0, x̂), then at most qualities strictly above i are purchased on [0, x̃]: ρm(y) ≤
1−

∑
k≤i q(k|y) for all y ∈ (0, x̃]. And because

∑
k≤i q(k|y) is non-decreasing, then ρm(y) ≤

1−
∑

k≤i q(k|x̃) for all y ∈ [x̃−∆, x̃]. Then, we have:

1∑
k≤i q(k|x̃−∆)

≤ 1 + (1−
∑
k≤i

q(k|x̃−∆))

∫
y∈(x̃−∆,x̃)

dD(y)

Sm(x̃)
.

Rearranging, we get:

1−
∑

k≤i q(k|x̃−∆)∑
k≤i q(k|x̃−∆)

≤
(1−

∑
k≤i q(k|x̃−∆))

∫
y∈(x̃−∆,x̂)

dD(y)

Sm(x̃)
.

By the definition of x̃,
∑

k≤i q(k|x̃ −∆) < 1 for every ∆ > 0, hence the above inequality is
only satisfied when:

1∑
k≤i q(k|x̃−∆)

≤

∫
y∈(x̃−∆,x̃)

dD(y)

Sm(x̃)
.

Taking the limit as ∆ → 0, the right-hand side is converging to 0. If the premise is true, the
left-hand side must converge to 1 by continuity of

∑
k<i q(k|x) at x̃ from Step 1.2. We get a
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contradiction. The proof is analogous for the case where
∑

k≤i q(k|x) < 1 for all x < x̂ but
converges to 1.

Threshold Structure. Proposition 7 establishes the threshold structure for all sorting
equilibria in the general model of Appendix A.

Proposition 7. Consider a sorting equilibrium (p, D,q, γ) ∈ E with positive sales. Let
x̂i = inf{x ∈ X : p(x) ≤ vi}, with a convention that x̂i = 1 whenever p(x) > vi for all
x ∈ X.

(i) x̂i is decreasing in i,

(ii) p(·) ∈ (vi, vi+1) on [x̂i+1, x̂i] (D-a.s.),

(iii) if the price is ever above v1 at visited locations, i.e.,
∫
y∈(0,x̂1)

dD(y) > 0, then it is above
v1 at all visited locations, i.e.,

∫
{y:p(y)≥v1} dD(y) = 1.

Proof. Part (i). The first part is straightforward, as we take infimum over a larger set as i

increases: {x ∈ X : p(x) ≤ vi} ⊆ {x ∈ X : p(x) ≤ vj} for any j > i.
Part (ii).The statement is trivially true whenever p(·) > vn on X (in this case, x̂i = 1,∀i).
Step 1: if p(x) ≤ vi and

∑
k>i q(j|x) > 0, then p(·) ≤ vi D-a.s. on [x, 1). Suppose the

statement is false. Let x̃i denote the location where the statement is false for “the first time”:

x̃i = sup

{
y > x :

∫
z∈(x,y),p(z)>vi

dD(z) = 0

}
Case 1.1.: there is an atom at x̃i, δ(x̃i) > 0. Then, by the definition of x̃i: p(x̃i) > vi. That
is, at x̃i, we have an upward jump in price. If ρm(x̃i) = 0, then the consumer receives a zero
payoff at x̃i. By the premise,

∑
k>i q(j|x) > 0, and the consumer may get a strictly positive

payoff at location x. Alternatively, if ρm(x̃i) > 0, the consumer can achieve a strictly higher
payoff at the locations that are in the left neighborhood of x̃i: they have discretely better
price and offer the quality composition that is at least as attractive as x̃i (by Lemma 3, part
(iv)). Again, we obtain a contradiction.

Case 1.2.: no atom at x̃i, δ(x̃i) = 0. Given the definition of x̃i, for any ∆ > 0:∫
z∈([x̃i,x̃i+∆],p(z)>vi

dD(z) > 0.

There exists ∆ small enough so that p(·) ∈ (vi, vi+1) over [x̃i, x̃i + ∆], D-a.s.. Indeed, by
Lusin’s Theorem, if p(·) is Lebesgue-measurable, it coincides with a continuous function
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except possibly for a zero-measure set. By assumption, p(·) > vi on a positive measure of
[x̃i, x̃i + ∆], then it must be that p(·) > vi a.e. on [x̃i, x̃i + ∆] for some ∆. In addition, for
small enough ∆, consumer shops with zero probability at the locations where p(·) > vi+1 as
q(l|·) is continuous for every l at x̃i by Lemma 3 (i), and p(x̃i−) ≤ vi.

Then, for small enough ∆, p(y) ∈ (vi, vi+1) on [x̃i, x̃i + ∆] D-a.s., and D is continuous
on [x̃i, x̃i +∆] (as D is continuous at x̃i by our premise and is right-continuous everywhere).
Consumer shops with a positive probability at the locations inside [x̃i, x̃i +∆] where he gets
a payoff:

n∑
k=1

q(k|x)(vk − p(x))+ <
∑
k>i

q(k|x)(vk − vi) ≤
∑
k>i

q(k|x̃i)(v
k − vi).

where the first inequality holds due to p(y) ∈ (vi, vi+1) on [x̃i, x̃i+∆] D-a.s.; and the second
inequality holds because the quality composition of q(k|x) is non-increasing over [x̃i, x̃i +∆]

for every k > i by Lemma 4 parts (i) and (ii). Again, we obtain a contradiction with the
optimality of the consumer’s strategy: there is a profitable deviation towards x̃i.
Step 2. By the definition of x̂i, either p(x̂i) ≤ vi, or for any ∆ > 0, there exists x ∈
(x̂i, x̂i +∆) such that p(x) ≤ vi. By Lemma 6,

∑
k>i q(j|x̂i) > 0, and by Lemma 3 (i), the

same inequality is preserved in the right neighborhood of x̂i. Either way, we get that the
premise of Step 1 is satisfied either at x̂i or in the right neighborhood of x̂i. Part (ii) of the
lemma follows.
Part (iii). Suppose not and let:

ŷ1 = inf{x ∈ X : p(x) < v1},

ỹ1 = inf

{
y ≤ x̂1 :

∫
z ∈(y,x̂1)

dD(y) = 0

}
.

Case 1: x̂1 = ŷ1. Let ỹ1 = inf
{
y ≤ x̂1 :

∫
z ∈(y,x̂1)

dD(y) = 0
}

. By Lemma 4 part (ii), q(l|·)
remains constant over(ỹ1, x̂1] for every l. There can be no atom at ỹ1, as at ỹ1, consumer’s
payoff is lower than that at x̂1:

n∑
k=1

q(k|ỹ1)(vk − p(ỹ1))+ <

n∑
k=1

q(k|ỹ1)(vk − p(x̂1)) =
n∑

k=1

q(k|x̂1)(v
k − p(x̂n))

where we used (by the definition of ŷ1): p(ỹ1) ≥ v1 > p(ŷ1) = p(x̂1).
Since there is no atom at ỹ1, Lemma 3 delivers q(l|·) is continuous at ỹ1 for every l.

But then, the consumer must shop with zero probability in a left neighborhood of ỹ1, as
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all these locations hold only marginally different quality composition but a discretely higher
price compared to x̂1. But this is only possible if ỹ1 = 0, which contradicts our assumption∫
(0,x̂1)

dD(y) > 0.
Case 2: ŷ1 > x̂1. If Sm(ŷ1−) = 0, the statement would be true. Conversely, suppose
Sm(ŷ1−) > 0. By Lemma 3 part (ii) q(i|·) is continuous at ŷ1 for every i. By Lemma 4 (ii),
q(i|ŷ1−) = q(i|ŷ1) = q(i|x̂1) for every i. Again, we obtain a contradiction since either q(·)
remains constant over (ỹ1, ŷ1), and the consumers suboptimally shop at high-priced locations;
or consumers suboptimally shop at some outlet locations in (x̂1, ŷ1) by paying a higher price
for the same quality composition as at ŷ1.

C Binary Quality

In this section, I provide results for a special case of a general model (see Appendix A) with
a binary quality type.

Lemma 7. Consider a x̂-threshold market outcome m = (p, D,q, γ) ∈ E . If m is a sorting
equilibrium with positive sales, then the total surplus is given by:

TS(p, D,q, γ) =

(∫
p(x)≤vl

dD(x) + γ

)
1− q(x̂)

1− π

(
πvh + (1− π)vl

)
− γq(x̂)(vh − vl)− γ(κ+ vl)

Proof. Note that if x̂ is an outlet threshold, then either D is continuous at x̂ or p(x̂) ≤ vl.
In either case, q is continuous at x̂ by Lemma 3. By Lemma 4 (ii), the quality composition
remains constant over [x̂, 1) and coincides with q(x̂) = q(x̂−) (D-a.s.). Then, the total
surplus is given by:

TS(p, D,q, γ) =

∫
x∈(0,x̂)

vhq(x)dD(x) +

∫
p(x)≤vl

dD(x)
[
q(x̂)vh + (1− q(x̂))vl

]
− γκ

= vh (Sm(0)− Sm(x̂−)) +

∫
p(x)≤vl

dD(x)[q(x̂)vh + (1− q(x̂))vl]− γκ

Recall that Sm(x)(1−q(x)) is constant on (0, x̂) by Lemma 4, and Sm(x̂−) =
∫
p(x)≤vl

dD(x)+

γ. Hence, we obtain:

TS(p, D,q, γ) =

(∫
p(x)≤vl

dD(x) + γ

)
vh
(
1− q(x̂)

1− π
− 1

)
+

∫
p(x)≤vl

dD(x)
[
q(x̂)vh + (1− q(x̂))vl

]
− γκ
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=

(∫
p(x)≤vl

dD(x) + γ

)
(1− q(x̂))

(
π

1− π
vh + vl

)
− γq(x̂)(vh − vl)− γ(κ+ vl)

Shape of Equilibrium Quality Composition. For threshold market outcomes, we can
characterize the sustained quality composition using Lemma 1. In particular, on the interval
containing non-outlet locations (0, x̂), the evolution of the relative likelihood between the two
quality levels is captured by the Lambert function W : R++ → R+, where W (x) is implicitly
defined as:

W (x)eW (x) = x

Lemma 8. Consider x̂−threshold market outcome m = (p, σ,q, γ), with a consumer strategy
admitting a density σ. Suppose total sales are positive, Sm(0) > 0, then q is sustained by
(p, σ) on [0, x̂] if and only if for every x ∈ [0, x̂]:

q(x)

1− q(x)
= W

(
π

1− π
exp

[
π

1− π
−

∫ x

0
σ(y)dy

(1− q(x̂))Sm(x̂)

])
Proof. By Lemma 4, q is sustained by (p, σ) on [0, x̂] if and only if Sm(x)(1− q(x)) remains
constant over [0, x̂]. If consumer strategy admits a density, then Sm is differentiable almost
everywhere on X. In particular, for almost every x ∈ [0, x̂]:

∂xSm(x) = −σ(x)q(x)

Hence, q is also almost-everywhere differentiable on [0, x̂], with a derivative:

∂xq(x) = −q(x)(1− q(x))
σ(x)

Sm(x)

= −q(x)(1− q(x))2
σ(x)

(1− q(x̂))Sm(x̂)

Then, from the above, we can solve out for the cumulative number of shoppers at all locations
below x for any x < x̂ such that q(x) > 0—which holds everywhere on [0, x̂] by Lemma 6.
We obtain that∫ x

0
σ(y)dy

(1− q(x̂))Sm(x̂)
=

∫ x

0

− ∂yq(y)

q(y)(1− q(y))2
dy
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=

∫ π

q(x)

1

q(1− q)2
dq = ln

(
π

1− π

1− q(x)

q(x)

)
+

π

1− π
− q(x)

1− q(x)

Rearranging, we get:

q(x)

1− q(x)
+ ln

(
q(x)

1− q(x)

)
= ln

(
π

1− π

)
+

π

1− π
−

∫ x

0
σ(y)dy

(1− q(x̂))Sm(x̂)

q(x)

1− q(x)
exp

[
q(x)

1− q(x)

]
=

π

1− π
exp

[
π

1− π
−

∫ x

0
σ(y)dy

(1− q(x̂))Sm(x̂)

]
q(x)

1− q(x)
= W

(
π

1− π
exp

[
π

1− π
−

∫ x

0
σ(y)dy

(1− q(x̂))Sm(x̂)

])

Convergence to Time-Invariant Solution: Simulations. I check if the long-run inter-
pretation of the sustained quality composition is consistent with the simulations.

Figure 7 plots the evolution of the quality composition. I discretize time, setting the
length of one period (the mass of consumers within a period) to 0.001. qt denotes the
quality composition at period t. I assume that at period 0, the quality composition at all
locations is the same and coincides with the production plant π. q denotes the sustained
quality composition. Simulations depicted in Figure 7 confirm convergence to the steady-
state quality composition q.

47



Figure 7: Evolution of the Quality Composition

Note: the figure plots the quality composition after 100, 103 and 106 periods when 0.5 is the outlet
threshold, and the consumer strategy of consumers attention uniformly across all locations at all periods.

Bounds of Sorting. Here, I derive the bounds on sorting under a general consumer strategy.
Define two boundary functions λ : [0, 1]× [0, 1] → [0, 1] and Λ : [0, 1]× [0, 1] → [0, 1]:

1 + γ = (Do + γ)(1− λ(Do, γ))

[
ln

(
π

1− π

1− λ(Do, γ)

λ(Do, γ)

)
+

1

1− π

]
and

Λ(Do, γ) = π
Do + γ

Do + γ + (1−Do)(1− π)

Lemma 9. Consider a x̂-threshold market outcome m = (p, D,q, γ) with positive total sales,
Sm(0) > 0. Suppose that consumer strategy D is discontinuous at finitely many points. If m
is a sorting equilibrium, then q(x̂) ∈

[
λ
(∫

y∈[x̂,1] dD(y)
)
,Λ
(∫

y∈[x̂,1] dD(y)
)]

(i) If D admits no atoms at non-outlet locations, then q(x̂) = λ
(∫

y∈[x̂,1] dD(y)
)

.

(ii) If there is a unique visited non-outlet location, then q(x̂) = Λ
(∫

y∈[x̂,1] dD(y), γ
)

.
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(iii) If D admits finitely many atoms on (0, x̂), then q(x̂) > λ
(∫

y∈[x̂,1] dD(y), γ
)

.

Proof. For brevity, let me denote
∫
y∈[x̂,1] dD(y) with Do.

Step 1: only outlets. First, note that the statement is true for Do = 1, since all consumers
shop at the outlet locations. If q is sustained by (p, D, γ), then q(x̂) = π. Both bounds also
collapse to π: Λ(1) = λ(1) = π. The statement of the lemma is true.

Step 2.1: absolutely continuous consumer strategy. Now suppose that −γ < Do < 1 and
D is absolutely continuous on (0, x̂). By Lemma 3, q is continuous at x̂. Then, by Lemma 8,
q is sustained by (p, D, γ) over [0, x̂] if and only if:

q(x̂)

1− q(x̂)
= W

(
π

1− π
exp

[
π

1− π
− D(x̂)

(1− q(x̂))Sm(x̂)

])
As all locations below x̂ are outlet locations D-a.s., then Sm(x̂) =

∫ 1

x̂
dD(y)+γ. Rewriting

the above equation, we obtain:

1 + γ = (Do + γ)(1− q(x̂))

[
ln

(
π

1− π

1− q(x̂)

q(x̂)

)
+

1

1− π

]
Every absolutely continuous consumer strategy induces the same outlet quality composi-

tion for a given mass of outlet shoppers Do.
Step 2.2: uniqueness of outlet quality. I now show that if q1 and q2 are both sustained

by (p, D, γ), then q1(x̂) = q2(x̂).
Suppose, by way of contradiction, that q1(x̂) > q2(x̂) (the other case is symmetric).

By Lemma 3, q1 and q2 are continuous at x̂. Hence, there exists a left neighborhood of
x̂, such that q1(·) > q2(·) for all stores within such neighborhood. Find the biggest such
neighborhood, and define:

x1 = inf{x < x̂ : q1(x) > q2(x)}.

It must be that at x1, the downstream sales volume is higher in the first market outcome,
m1 = (p, D,q1, γ) than in the second one, m2 = (p, D,q2, γ):

Sm2(x1) = Do + γ +

∫ x̂

x1

q2(x)dD(x) < Do + γ +

∫ x̂

x1

q1(x)dD(x) = Sm1(x1)

By Lemma 4, q1 and q2 being sustained by (p, D, γ) requires:

(1− q2(x1)) = (1− q2(x̂))
Do + γ

Sm2(x1)
> (1− q2(x̂))

Do + γ

Sm1(x1)
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> (1− q1(x̂))
Do + γ

Sm1(x1)
= (1− q(x1))

Hence, q2(x1) < q1(x1), and, by the same reasoning: q2(x1−) < q1(x1−). Then, it must be
that x1 = 0 (or else x1 is not correctly defined) and π = q1(0) > q2(0) = π, we obtain a
contradiction.

Step 2.3: approximating continuous consumer strategies. Whenever D is continuous, we
can approximate it with some sequence of absolutely continuous cdf, {Dn}∞n=1. For each of
these, we know how to construct an induced steady-state from Step 2.1.

I now go over this formally and show that if D is continuous on [x1, x2] ⊂ [0, x̂], then:

q(x2)

1− q(x2)
= W

(
q(x1)

1− q(x1)
exp

[
q(x1)

1− q(x1)
− D(x2)−D(x1)

(Do + γ)(1− q(x̂))

])
To simplify notation, denote qo = q(x̂) in the sorting equilibrium (p, D,q, γ).

Consider a sequence of shopping strategies such that each Dn admits a density almost
everywhere on [x1, x2] (for instance, take Dn to be piece-wise uniform) and that converges to
D(·) (pointwisely) on [x1, x2].

Construct respective sequence of quality compositions on [x1, x2], qn(·), so that for every
x ∈ [x1, x2]: (

Sm(x1)−
∫ x

x1

qn(x)dDn(y)

)
(1− qn(x)) = (1− qo)(Do + γ).

For each Dn, qn(x) is itself absolutely continuous and is given by:

qn(x)

1− qn(x)
= W

(
q(x1)

1− q(x1)
exp

[
q(x1)

1− q(x1)
− Dn(x)−Dn(x1)

(Do + γ)(1− qo)

])
In addition, since Dn converges to D on [x1, x2], then qn(x) converges (pointwisely) to q̃

with:

q̃(x)

1− q̃(x)
= W

(
q(x1)

1− q(x1)
exp

[
q(x1)

1− q(x1)
− D(x)−D(x1)

(Do + γ)(1− qo)

])
I now show that (1 − q̃(x))(Sm(x1) −

∫ x

x1
q̃(y)dD(y)) remains constant over [x1, x2] and

equals (1− qo)(Do + γ). Given the definition of qn, it suffices to show that:(
Sm(x1)−

∫ x

x1

qn(y)dDn(y)

)
(1− qn(x)) →

n→∞
(Sm(x1)−

∫ x

x1

q̃(y)dD(y))(1− q̃(x)),

∀x ∈ [x1, x2].
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Since [x1, x2] is compact, D is uniformly continuous on [x1, x2] by Heine–Cantor theorem.
Hence, Dn converges to D uniformly. Since q(x1) is bounded by π, and Do + γ > 0 in
any market outcome with positive sales, the argument inside W is bounded. Then, W is
uniformly continuous on [0, K] for some K large enough and qn(x) converges uniformly to q̃.

It remains to verify that
∫ x

x1
qn(y)dDn(y) converges to

∫ x

x1
q̃(y)dD(y) for every x. We

have: ∫ x

x1

qn(y)dDn(y) =

∫ x

x1

q̃(y)dDn(y) +

∫ x

x1

qn(y)− q̃(y)dDn(y).

As as q̃ is continuous on [x1, x2], by Portmanteau theorem:∫ x

x1

q̃(y)dDn(y) →
n→∞

∫ x

x1

q̃(y)dD(y).

Hence, it now only remains to show that
∫ x

x1
qn(y)− q̃(y)dDn(y) converges to 0. As qn(y)

converges to q̃(y) uniformly, then for any ε > 0 for sufficiently large n:

ε ≥ ε

∫ x

x1

dDn(y) ≥
∫ x

x1

qn(y)− q̃(y)dDn(y) ≥ −ε

∫ x

x1

dDn(y) ≥ −ε

Taking ε → 0, we get the desired convergence.
By the same proof as in the previous step, a sustained quality composition is uniquely

defined at x2: q(x2) = q̃(x2).
We may now conclude that if D has no atoms on (0, x̂), then q(x̂−) = λ(Do, γ). By

Lemma 3, q is continuous at x̂, so that

q(x̂−) = q(x̂) = λ(Do, γ).

Step 3. Finally, let me show that the quality composition is within the suggested bound-
aries for every shopping strategy D.

Using Lemma 3 part (iii), if δ(x̃) > 0 for some x̃ < x̂:

q(x̃−)− q(x̃)

(1− q(x̃−))
=

δ(x̃)q(x̃)

Sm(x̃)

q(x̃−)− q(x̃)

(1− q(x̃−))q(x̃)
=

δ(x̃)

Sm(x̃)
(6)

First, there is a unique visited non-outlet location x̃ ∈ (0, x̂). Then, by Lemma 4:
q(x̃−) = q(0) = π. As all locations (x̃, 1) are outlets (D-a.s.), then Sm(x̃) = Do + γ.
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Plugging these into Equation (6), we obtain:

π − q(x̃)

(1− π)q(x̃)
=

1−Do

Do + γ
,

which simplifies to:

q(x̃) = π
Do + γ

Do + γ + (1−Do)(1− π)

As (x̃, 1] are D-a.s. outlet locations, we obtain:

q(x̂) = q(x̃) = Λ(Do, γ).

Now, consider any consumer strategy D. For every two non-outlet locations x1, x2 < x̂,
by Lemma 4 part (ii):

(1− q(x1))Sm(x1) = (1− q(x2))Sm(x2).

Locations (0, x̂) are non-outlets, hence:

Sm(x1) = Sm(x2) +

∫
y∈(x1,x2]

q(y)dD(y),

and we obtain:

(1− q(x1))

(
Sm(x2) +

∫
y∈(x1,x2]

q(y)dD(y)

)
= (1− q(x2))Sm(x2),

which simplifies to:

q(x1)− q(x2)

(1− q(x1))
=

∫
y∈(x1,x2]

q(y)dD(y)

Sm(x2)
≥ q(x2) (D(x2)−D(x1))

Sm(x2)
,

where we used q(·) being non-increasing on (0, x̂) by Lemma 4 part (i).
In particular, taking x1 = 0 and x2 → x̂−, we obtain:

π − q(x̂−)

1− π
≥ q(x̂−)(1−Do)

Do + γ
.
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As q(·) is continuous at x̂ by Lemma 3 part (ii), we get from the above:

q(x̂) = q(x̂−) ≤ π
Do + γ

Do + γ + (1− π)(1−Do)
= Λ(Do, γ).

This confirms the upper bound on q(x̂).

Now, we move on to verifying the lower bound. By Step 2, whenever D is continuous on
[x1, x2):

ln

(
q(x1)

1− q(x1)

1− q(x2−)

q(x2−)

)
+

1

1− q(x1)
− 1

1− q(x2−)
=

D(x2−)−D(x1)

(Do + γ)(1− qo)
.

If there is a jump at x2, then using Equation (6) and replacing Sm(x2) with (Do + γ)(1 −
qo)/(1−q(x2)) (due to Lemma 4 (i)), we get that the overall change over an interval [x1, x2]

is:

ln

(
q(x1)

1− q(x1)

1− q(x2−)

q(x2−)

)
+

1

1− q(x1)
− 1

1− q(x2−)

+
q(x2−)− q(x2)

(1− q(x2−))q(x2)

1

1− q(x2)
=

D(x2)−D(x1)

(Do + γ)(1− qo)
(7)

Due to its concavity, ln(·) satisfies:

ln(y) < y − 1, ∀y > 1.

When D is discontinuous at x2, so is q: q(x2−) 6= q(x2) so that we have:

ln

(
q(x2−)

1− q(x2−)

1− q(x2)

q(x2)

)
<

q(x2−)

1− q(x2−)

1− q(x2)

q(x2)
− 1

Adding 1
1−q(x2−)

− 1
1−q(x2)

to both sides of the inequality, we obtain a bound:

ln

(
q(x2−)

1− q(x2−)

1− q(x2)

q(x2)

)
+

1

1− q(x2−)
− 1

1− q(x2)

<
q(x2−)

1− q(x2−)

1− q(x2)

q(x2)
− 1 +

1

1− q(x2−)
− 1

1− q(x2)

=
q(x2−)− q(x2)

(1− q(x2−))q(x2)

1

1− q(x2)
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We can now replace the right-hand side using Equation (7) to obtain:

ln

(
q(x2−)

1− q(x2−)

1− q(x2)

q(x2)

)
+

1

1− q(x2−)
− 1

1− q(x2)

<
D(x2)−D(x1)

(Do + γ)(1− qo)
− ln

(
q(x1)

1− q(x1)

1− q(x2−)

q(x2−)

)
− 1

1− q(x1)
+

1

1− q(x2−)

which simplifies to:

ln

(
q(x1)

1− q(x1)

1− q(x2)

q(x2)

)
+

1

1− q(x1)
− 1

1− q(x2)
<

D(x2)−D(x1)

(Do + γ)(1− qo)
. (8)

If D is continuous on (0, x̂), by Step 2, the sorting equilibrium m has outlet quality
composition that achieves the lower bound, λ(Do, γ). Else, for finitely many discontinuities,
we can find {x1, . . . , xn} of non-outlet locations, such that D is discontinuous at xi. For each
[0, x1], . . . [xi, xi+1], [xn, x̂] Inequality (8) holds. Summing these up, we obtain:

ln

(
π

1− π

1− qo

qo

)
+

1

1− π
− 1

1− qo
<

1−Do

(Do + γ)(1− qo)

Part (iii) follows.

D Omitted Proofs for Section 4.1

Proof of Lemma 1. Follows from a more general Lemma 4.

Proof of Theorem 1. The threshold structure of a sorting equilibrium in a binary-quality
model follows from a more general Proposition 7.
Part (i). Suppose no outlets are visited. In a model with no direct disposal, by Lemma 5,
if the measure of visited outlets is zero, then the equilibrium sales are zero. Consequently,
both the seller and consumers get a zero equilibrium payoff.
Part (ii). Suppose all visited locations are outlets. By Proposition 1, if consumers visit
outlets with probability one, then the sorting equilibrium is neutral. As consumers shop at
prices of at most vl, it follows that the consumer’s payoff is at least π(vh − vl).
Part (iii). Consider consumer payoff in a sorting equilibrium, where both types of locations
are visited. By Lemma 4, all outlets have the same quality as the outlet threshold x̂, D-a.s..
As a positive measure of outlets visited, the consumer’s payoff is at least q(x̂)(vh − vl). By
Proposition 7 part (iii), if non-outlets are visited with positive probability, consumers shop
at prices (weakly) above vl with probability 1. Together, these two imply consumer payoff
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is exactly q(x̂)(vh − vl). The expression for the total surplus is derived in the main text. It
follows from Lemma 2 (proven in the main text) and Proposition 1.

Proof of Proposition 1. By Lemma 8, for every x ∈ (0, x̂)

q(x)

1− q(x)
+ ln

(
q(x)

1− q(x)

)
= ln

(
π

1− π

)
+

π

1− π
−

∫ x

0
σ(y)dy

(1− q(x̂))
∫ 1

x̂
σ(x)dx

By Lemma 5, if the sales are positive, then Sm(x̂) > 0. Then, by Lemma 3 (i), q(·) is
continuous at x̂.

q(x̂)

1− q(x̂)
+ ln

(
q(x̂)

1− q(x̂)

)
= ln

(
π

1− π

)
+

π

1− π
−

∫ 1

x̂
σ(x)dx

Sm(x̂)(1− q(x̂))

= ln

(
π

1− π

)
+

π

1− π
− 1− Sm(x̂)

Sm(x̂)(1− q(x̂))

Replacing Sm(x̂) with Sm(0)
1−π

1−q(x̂)
by Lemma 4 part (i), we obtain:

q(x̂)

1− q(x̂)
+ ln

(
q(x̂)

1− q(x̂)

)
= ln

(
π

1− π

)
+

π

1− π
− 1

Sm(0)(1− π)
+

1

1− q(x̂)

Rearranging, we get the desired expression connecting total sales volume and sorting preci-
sion:

Sm(0)

[
ln

(
π

1− π

1− q(x̂)

q(x̂)

)
(1− π) + 1

]
= 0

Sorting Precision Implementation. To finalize the proof of the theorem, Lemma 10
constructs a sorting equilibrium with any given outlet quality q ∈ (0, π].

Lemma 10. For any q ∈ (0, π], there exists a sorting equilibrium (p, σ,q) ∈ E that has
quality q at the outlet threshold x̂: q(x̂) = q.

Proof. Take any q ∈ (0, π]. I now construct a sorting equilibrium (p, σ,q), such that q(x̂) = q.
Take σ(x) = 1,∀x ∈ X. Compute the outlet threshold x̂ from:

(1− q)

(
ln

(
π

1− π

1− q

q

)
+

1

1− π

)
=

1

1− x̂
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Note that for any q ∈ (0, π], the outlet threshold is interior x̂ ∈ [0, 1). Set all locations [x̂, 1]

to be outlets with price vl: p(·) = vl. Define the quality composition to be q(x) = q, ∀x ≥ x̂.
Then by Lemma 1, q(·) is sustained by (p, σ) on [x̂, 1].

For earlier locations x ∈ [0, x̂), let q(·) be defined by:

q(x)

1− q(x)
= W

(
π

1− π
exp

[
π

1− π
− x

(1− x̂)(1− q)

])
Define prices from p(x) = vh − q

q(x)
(vh − vl),∀x ∈ [0, x̂). By construction, q(·) is continuous

at x̂ and is sustained by (p, σ) on [1, x̂] by Lemma 8 since p(·) > vl on (0, x̂).
Finally, the prices make consumers indifferent between all locations, and σ is optimal

given (p,q).

E Omitted Proofs for Section 4.3

In this appendix, I analyze the properties of the seller’s payoff as a function of the outlet
quality composition:

Ṽ S(q) =
πvh + (1− π)vl

(1− π) ln
(

π
1−π

1−q
q

)
+ 1

− q(vh − vl).

Lemma 11. Ṽ S(·) has the following properties:

(i) Ṽ S(π) = vl

(ii) ∂qṼ
S(π) > 0

(iii) lim
q→0

Ṽ S(q) = 0, lim
q→0

∂qṼ
S = ∞

(iv) Ṽ S is concave-convex: that is, there exists q̄(π) ∈ (0, π/2), such that Ṽ S is convex on
(q̄(π), π] and is concave on [0, q̄(π))

Proof. Before proving part (i)− (iv), consider the derivative of Ṽ S:

∂qṼ
S(q) =

πvh + (1− π)vl(
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)2 1− π

(1− q)q
− (vh − vl) (9)
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(i) Is straightforward from plugging in q = π into Ṽ S(·).

(ii) Plugging in q = π into Equation (9), we get:

∂qṼ
S(π) =

πvh + (1− π)vl

π
− (vh − vl) =

vl

π
> 0

(iii)

lim
q→0

Ṽ S(q) = lim
q→0

πvh + (1− π)vl

(1− π) ln
(

π
1−π

1−q
q

)
+ 1

= 0

lim
q→0

∂qṼ
S = lim

q→0

πvh + (1− π)vl(
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)2 1− π

(1− q)q
− (vh − vl)

I now compute the limit of lim
q→0

1(
(1−π) ln

(
π

1−π
1−q
q

)
+1

)2
1

(1−q)q
by applying L’Hôpital’s rule

twice:

lim
q→0

1/[(1− q)q](
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)2 = lim

q→0

1

2(1− π)

(1− 2q)/[(1− q)q]

(1− π) ln
(

π
1−π

1−q
q

)
+ 1

= lim
q→0

1

2(1− π)2
1− 2q + 2q2

(1− q)q
= ∞

(iv)

∂2
qqṼ

S(q) =
πvh + (1− π)vl

(1− q)2q2

2(1− π)− (1− 2q)
(
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)

(
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)3

The sign of ∂2
qqṼ

S(q) is then determined by the sign of:

2(1− π)− (1− 2q)

(
(1− π) ln

(
π

1− π

1− q

q

)
+ 1

)
(10)

Whenever q ∈ [min{1/2, π}, π], the above is positive. For q < 1/2, the Expression
(10) is increasing with q, and is negative at q → 0. Then, Expression (10) crosses zero
exactly once. Denote the zero of Expression (10) as q̄(π). To get a more precise bound
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on q̄, use ln(y) ≤ y − 1 for all y > 1:

2 = (1− 2q̄(π))

(
ln

(
π

1− π

1− q̄(π)

q̄(π)

)
+

1

1− π

)
≤ (1− 2q̄(π))

π

1− π

1

q̄(π)
,

which simplifies to q̄(π) ≤ 0.5π for π ∈ (0, 1).

For any (π, vh), where the seller prefers an interior solution, it is given by:

∂qṼ
S
(π,vh)(q

o(π, vh)) = 0

∂2
q qṼ

S
(π,vh)(q

o(π, vh)) < 0

By Lemma 11, qo(π, vh) is unique at (π, vh).

Next, Proposition 8 shows when the seller’s optimal solution is a neutral sorting equilib-
rium. This occurs when high-quality goods are either not valued enough by the consumers
or when they are too rare at the production plant.

Proposition 8. There exist π̄(vh, vl) and v̄h(π, vl), such that Ṽ S attains its maximum at
q = π if and only if π ≤ π̄(vh, vl), vh ≤ v̄h(π, vl).

Proof. Step 1. First, I establish that it is optimal for the seller to choose a neutral sorting
equilibrium whenever π → 0 or vh → vl; but to choose an active sorting equilibrium for
π → 1 or vh → ∞.

For any (π, vh), we have boundary on the seller’s payoff Ṽ S
(π,vh)

(·):

Ṽ S
(π,vh)(q) ≤ πvh + (1− π)vl − q(vh − vl)

with a strict inequality for any q < π. As π → 0 or vh → vl, this boundary converges to vl

for every feasible q. The seller can actually achieve a payoff of vl by doing no sorting.

π → 1: Fix a sorting precision, so that the average quality at the outlets is 1−π
π

. For
sufficiently large π, 1−π

π
π and hence is feasible. As π → 1, we obtain the following boundary

on the seller’s payoff from some interior solution:

max
q∈(0,π)

Ṽ S
(π,vh)(q) ≥ Ṽ S

(π,vh)

(
1− π

π

)
=
(
πvh + (1− π)vl

)
/

(
2 ln

(
π

1− π

)
(1− π) + 1

)
− 1− π

π
(vh − vl)
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→
π→1

vh > vl

vh → ∞: Similarly, fix any outlet quality composition at vl

vh−vl
, which is feasible for large

enough vh. Then, the seller’s payoff from the interior solution is at least:

max
q∈(0,π)

Ṽ S
(π,vh)(qo) ≥ Ṽ S

(π,vh)

(
vl

vh − vl

)
=

πvh + (1− π)vl

(1− π) ln
(

π
1−π

vh−2vl

vh−vl

)
+ 1

− vl

→
vh→∞

∞ > vl

This completes Step 1. From Step 1, there exist some parameters where the optimum
switches between some interior solution and the corner solution at q = π.

Step 2. Now, I show that switching between the two solution types can only happen
once.

I first show this for the probability of high-quality goods, π. Suppose that at (π, vh), the
seller’s maximal payoff is strictly above vh.

By the Envelope Theorem,

dṼ S
(π,vh)

(qo(π, vh))

dπ
= ∂πṼ

S
(π,vh)(q

o(π, vh)),

where

∂πṼ
S
(π,vh)(q) =

vh − vl

(1− π) ln
(

π
1−π

1−q
q

)
+ 1

+
(
πvh + (1− π)vl

) ln
(

π
1−π

1−q
q

)
− 1

π(
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)2

=
vh ln

(
π

1−π
1−q
q

)
− vl

π(
(1− π) ln

(
π

1−π
1−q
q

)
+ 1
)2 .

Then, the sign of
dṼ S

(π,vh)
(qo(π,vh))

dπ
coincides with the sign of

vh ln

(
π

1− π

1− qo(π, vh))

qo(π, vh))

)
− vl

π
. (11)

If the seller ever switches to the interior solution (which is true by Step 1), then
dṼ S

(π,vh)
(qo(π,vh))

dπ
>

0 is positive at least some (π1, v
h). Let me show that

dṼ S
(π,vh)

(qo(π,vh))

dπ
≥ 0 at all (π, vh) where

π > π1. It is enough to establish that the Expression (11) is increasing in π at any (π, vh)

where Expression (11) equals 0. In turn, it suffices to show that qo(π, vh) is decreasing in π
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at any such (π, vh).
By definition of qo(π, vh), it is decreasing in π at (π, vh) whenever ∂2

qπṼ
S
(π,vh)

(qo(π, vh)) <

0.

∂2
qπṼ

S
(π,vh)(q

o(π, vh)) ∝ (1− π)(vh − vl)(
(1− π) ln

(
π

1−π
1−qo(π,vh)
qo(π,vh)

)
+ 1
)2

− πvh + (1− π)vl(
(1− π) ln

(
π

1−π
1−qo(π,vh)
qo(π,vh)

)
+ 1
)2

+ 2(1− π)
(πvh + (1− π)vl)

(
ln
(

π
1−π

1−qo(π,vh)
qo(π,vh)

)
− 1

π

)
(
(1− π) ln

(
π

1−π
1−qo(π,vh)
qo(π,vh)

)
+ 1
)3

= (1− π)
vh ln

(
π

1−π
1−qo(π,vh)
qo(π,vh)

)
− vl

π(
(1− π) ln

(
π

1−π
1−qo(π,vh)
qo(π,vh)

)
+ 1
)3

− (πvh + (1− π)vl)
1
π(

(1− π) ln
(

π
1−π

1−qo(π,vh)
qo(π,vh)

)
+ 1
)3

Hence, if Expression (11) is 0 at (π, vh), then ∂2
qπṼ

S
(π,vh)

(qo(π, vh)) < 0. Consequently, Ex-
pression (11) is increasing in π at (π, vh).

Now, I do the same exercise for vh. Suppose the seller strictly prefers the interior solution
at some (π, vh), then qo(π, vh) is well-defined and:

dṼ S
(π,vh)

(qo(π, vh))

dvh
= ∂vhṼ

S
(π,vh)(q

o(π, vh)) =

π

(1− π) ln
(

π
1−π

1−qo(π,vh)
qo(π,vh)

)
+ 1

− qo(π, vh)

As ln(y) ≤ y − 1, we get a lower bound on the above:

dṼ S
(π,vh)

(qo(π, vh))

dvh
≥ qo(π, vh)− qo(π, vh) = 0

Hence, the seller’s payoff from the interior solution is increasing in vh. Then, if the seller
prefers the interior solution at (π, vh1 ), she strictly prefers an interior solution for all (π, vh)
with vh > vh1 .

By Proposition 8, the seller prefers an interior solution as long as the value of high-quality
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goods, or their probability at the production plant, is sufficiently high.

Proof of Proposition 2. I now derive the comparative statics of qo with respect to π and vh.
I restrict attention to parameters (π, vh) where the seller strictly prefer the interior solution,
and qo(·, ·) is well-defined.
Step 1: comparative statics of qo with respect to π. The sign of ∂πqo(π, vh) is determined
by the sign of ∂2

q,πṼ
S
(π,vh)

(qo(π, vh)). By the algebra in proof of Proposition 8:

∂2
qπṼ

S
(π,vh)(q

o(π, vh)) ∝ πvh − 2
πvh + (1− π)vl

(1− π) ln
(

π
1−π

1−qo(π,vh)
qo(π,vh)

)
+ 1

= πvh − 2Ṽ S
(π,vh)(q

o(π, vh)) + 2qo(π, vh)(vh − vl)

By Lemma 11, qo(π, vh) < 0.5π, and we can bound the above:

πvh − 2Ṽ S
(π,vh)(q

o(π, vh)) + 2qo(π, vh)(vh − vl)

< 2πvh − 2qo(π, vh)vl − 2Ṽ S
(π,vh)(q

o(π, vh))

Using Step 1 in Proposition 8:

lim
π→1

Ṽ S
(π,vh)(q

o(π, vh)) = vh

Then, for high enough π, ∂2
qπṼ

S
(π,vh)

(qo(π, vh)) < 0.
Step 2: comparative statics of qo with respect to vh. At the interior candidate solution, the
sign of ∂vhqo(π, vh) is given by the sign of ∂2

qvh
Ṽ S
(π,vh)

(qo(π, vh)):

∂2
qvhṼ

S
(π,vh)(q

o(π, vh)) =
π(

(1− π) ln
(

π
1−π

1−qo(π,vh)
qo(π,vh)

)
+ 1
)2 1− π

(1− qo(π, vh))qo(π, vh)
− 1

Using the definition of qo, we can replace the first summand in the above to get:

∂2
qvhṼ

S
(π,vh)(q

o(π, vh)) =
π(vh − vl)

πvh + (1− π)vl
− 1 = − vl

πvh + (1− π)vl
< 0

F Omitted proofs for Section 4.4

Proof of Proposition 3. By Proposition 7, a sorting equilibrium m = (p, σ,q, γ) is x̂-threshold
market outcome. For brevity, let qo ≡ q(x̂).
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By Lemma 7 the total surplus is given by:

TS(p, σ,q, γ) =

(∫
y∈[x̂,1)

σ(y)dy + γ

)
(1− qo)

(
π

1− π
vh + vl

)
− γqo(vh − vl)− γ(κ+ vl).

By Lemma 9, when consumer strategy is continuous in (0, x̂), we have:

TS(p, σ,q, γ) =
(
πvh + (1− π)vl

) 1 + γ

(1− π) ln
(

π
1−π

1−qo

qo

)
+ 1

− γqo(vh − vl)− γ(κ+ vl).

The seller’s payoff is the difference between the total surplus and the consumer payoff:

V S(p, σ,q, γ) = TS(p, σ,q, γ)− V B(p, σ,q, γ).

Similar to Theorem 1, we now consider three cases of the sorting equilibria, depending
on the consumer share of outlets.
Case 1: only non-outlets are visited. In this case,

∫
y∈[x̂,1) dD(y) = 0, and the seller may

extract the whole total surplus from a market outcome by charging a price of vh at all store
locations.

By Lemma 9, the quality composition at 1 is given by Φ(γ), where:[
ln

(
π

1− π

1− Φ(γ)

Φ(γ)

)
+

1

1− π

]
=

1 + γ

γ(1− Φ(γ))
.

Note that Φ(γ) is the lowest outlet quality composition that the seller could achieve for a
fixed disposal rate γ. We can write the seller’s profit for a sorting equilibrium with no outlets
as:

V̂ S
κ (γ) =

(
π

1− π
vhγ(1− Φ(γ))− Φ(γ)vhγ − γκ

)
.

Denote the seller’s maximal profit from such sorting equilibria as V ∗∗:

V ∗∗ = sup
γ>0

V̂ S(γ, κ).

Case 2: only outlets are visited. Whenever consumers shop only at outlet locations, the
seller receives a constant price p̄ ≤ vl, and the seller’s profit is at most vl, which is equal to
Ṽ S(π).

Case 3: both types of locations are visited. If consumers shop at both outlets and non-outlets,
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then by Proposition 7, V B(p, D,q, γ) = qo(vh − vl) and we get:

V S(p, D,q, γ) = TS(p, D,q, γ)− V B(p, D,q, γ)

=
(
πvh + (1− π)vl

) 1 + γ

(1− π) ln
(

π
1−π

1−qo

qo

)
+ 1

− γqo(vh − vl)− γ(κ+ vl)− qo(vh − vl)

= (1 + γ)Ṽ S(qo)− γ(κ+ vl)

Hence, the seller’s maximal profit among all sorting equilibria where consumers shop at
both types of locations is:

V ∗ = sup
γ≥0

sup
q∈[Φ(γ),π]

q>0

(1 + γ)Ṽ S(q)− γ(κ+ vl)

Clearly, V ∗ ≥ vl = Ṽ S(π), which the seller can achieve with no direct disposal by setting
γ = 0. Then, the seller’s optimal choice reduces to selecting between V ∗ and V ∗∗.

Let q∗ be the optimizer of Ṽ S over (0, π]. I now establish the following:

max{V ∗, V ∗∗} =


max

γ∈(0,∞)
V̂ S
κ (γ), if Ṽ S(q∗) > κ+ vl

Ṽ S(q∗), if π/(1− π)vh ≤ κ

max

{
Ṽ S(q∗), max

γ∈(0,∞)
V̂ S
κ (γ)

}
, if κ ∈

[
Ṽ S(q∗)− vl, π

1−π
vh
)

Case 1: Ṽ S(q∗) > κ+vl. Then, the seller is better off not having outlet locations: V ∗∗ > V ∗.
Note first that Φ(γ) is increasing γ and:

lim
γ→0

Φ(γ) = 0, lim
γ→∞

Φ(γ) = π.

If Ṽ S(q∗) > κ+vl, then, with no disposal, the seller’s profit is maximized at an active sorting
equilibrium: q∗ < π. There exists a unique γ̃ ∈ (0,∞), such that the seller achieves exactly
the sorting precision that maximizes Ṽ S(·):

Φ(γ̃) = q∗.

For all lower disposal rates γ ≤ γ̃ and all outlet qualities q ∈ (0, π]:

(1 + γ)Ṽ S(q)− γ(κ+ vl) ≤ (1 + γ)Ṽ S(q∗)− γ(κ+ vl)
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≤ (1 + γ̃)Ṽ S(q∗)− γ̃(κ+ vl)

= (1 + γ̃)Ṽ S(Φ(γ̃))− γ̃(κ+ vl)

<

(
π

1− π
vhγ̃(1− Φ(γ̃))− Φ(γ̃)vhγ̃ − γ̃κ

)
≤ V ∗∗.

Similarly, for all higher disposal rates γ > γ̃:

sup
q∈[Φ(γ),π]

q>0

(1 + γ)Ṽ S(q)− γ(κ+ vl) = (1 + γ)max{Ṽ S(π), Ṽ S(Φ(γ))} − γ(κ+ vl) < V ∗∗.

where I use the fact that Ṽ S is convex-concave by Lemma 11, and hence whenever the lower
bound is binding (q∗ < Φ(γ)), Ṽ S reaches its optimum at one of the corners. That is,
Ṽ S(q∗) > κ+ vl is sufficient for the seller not to use outlet locations.
Case 2. Alternatively, suppose Ṽ S(q∗) ≤ κ+ vl, then:

sup
q∈[Φ(γ),π]

q>0

(1 + γ)Ṽ S(q)− γ(κ+ vl) ≤ (1 + γ)Ṽ S(q∗)− γ(κ+ vl) ≤ Ṽ S(q∗)

That is, in this case, V ∗ = Ṽ S(q∗). The seller does not use direct disposal simultaneously
with outlet locations. Additionally, for π/(1 − π)vh ≤ κ, the seller prefers outlets to be
visited, since

V ∗ ≥ Ṽ S(π) = vl > 0 = V ∗∗.

Optimal Disposal Rate. Let me now verify that an optimal V̂ S attains its optimum on
(0,∞) for any κ > 0 whenever π/(1− π)vh > κ. To that end, we examine the limit ∂γV̂ S

κ (γ)

at the two corners.

∂γV̂
S
κ (γ) =

π

1− π
vh(1− Φ(γ))− Φ(γ)vh − κ− γvh

1− π
∂γΦ(γ)

An unbounded disposal rate is suboptimal:

∂γV̂
S
κ (γ) →

γ→∞
−κ− lim

γ→∞

γvh

1− π
∂γΦ(γ) ≤ −κ

as ∂γΦ(γ) > 0.
Consider now the other bound:

∂γV̂
S
κ (γ) →

γ→0

π

1− π
vh − κ− lim

γ→0

γvh

1− π
∂γΦ(γ)
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Then, to establish the optimal choice of γ is strictly above 0 for any π/(1 − π)vh > κ, it is
enough to show limγ→0 γ∂γΦ(γ) = 0.

γ∂γΦ(γ) =
1

(1 + γ)/(1− Φ(γ)) + γ/Φ(γ)

Hence, the limit limγ→0 γ∂γΦ(γ) = 0 is determined by the limit of γ/Φ(γ). From the definition
of Φ, it must be that γ converges to 0 at the same rate as ln(Φ(γ)), hence limγ→0

γ
Φ(γ)

= ∞
implying limγ→0 γ∂γΦ(γ) = 0 as required.

Regime Switches. Finally, to establish there is a unique threshold where the optimal
regime switches, note that Ṽ S(q∗) is independent of κ whereas maxγ∈(0,∞) V̂

S
κ (γ) is strictly

decreasing in κ. Hence, for every parameters (vh, vl, π), there exists κ̄ as in the formulation
of the proposition.

To prove κ̄ is increasing in vl, note that maxγ∈(0,∞) V̂
S
κ (γ) is constant in vl, but Ṽ S(q∗) is

strictly increasing in vl. Hence, if vl increases, the switch occurs at a lower production/dis-
posal cost.

G Vintage-Based Pricing

I now provide details for the vintage-based pricing model.

The vintage-based sorting equilibrium requires both vintage distribution and quality com-
position to be in a steady state.

The total outflow of products with vintages in (x1, x2] is: the purchases of these vintages,
and the mass of vintage x2. The total inflow of goods equals the mass of products of vintage
x1. Then, the total stock at vintages in (x1, x2] stays the same when:∫

y∈[x1,x2]

σ(y)
[
q(y)1{p(y) ≤ vh}+ (1− q(y))1{p(y) ≤ vl}

]
dy + µ(x2) = µ(x1) (12)

Similarly, the mass of high-quality goods of vintages (x1, x2] is preserved when:∫
y∈[x1,x2]

σ(y)q(y)1{p(y) ≤ vh}dy + q(x2)µ(x2) = q(x1)µ(x1) (13)

We now say that (µ,q) is sustained by (p, σ) on Y ⊆ X if both Equation (12) and
Equation (13) hold for each (x1, x2] ⊆ Y . Say that (µ,q) is sustained by (p, σ) if it is
sustained on [0, 1].
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Payoffs. The payoffs in this alternative formulation of the model remain the same. They are
described by the same functions as in the benchmark model. Consumer payoff in a vintage-
based market outcome (p, σ, µ,q) only depends on consumer strategy, prices, and quality
composition and is given by V B(p, σ,q). The seller’s payoff only depends on the distribution
of vintages through the rate of disposal. It is given by V S(p, σ,q, µ(1)).
Vintage-Based Sorting Equilibrium. We adjust the sorting equilibrium definition to
account for the endogeneity of stock distribution across vintages. Say that a vintage-based
market outcome w = (p, σ, µ,q) is a a vintage-based sorting equilibrium if both stock distri-
bution and quality composition (µ,q) are sustained by prices and consumer strategy (p, σ),
and σ maximizes consumer payoff V B(p, σ,q) for the given (p,q).
Vintage-Based Sorting Equilibrium. We adjust the sorting equilibrium definition to
account for the endogeneity of stock distribution across vintages. Say that a market outcome
m = (p, σ, µ,q) is a a vintage-based sorting equilibrium if (i) both stock distribution and
quality composition (µ,q) are sustained by prices and consumer strategy (p, σ), and (ii) σ

maximizes consumer payoff V B(p, σ,q) for the given (p,q).

Proof of Theorem 2. Consider a vintage-based market-outcome w = (p, σ, µ,q), and a mar-
ket outcome m = (p, σ,q, γ) with disposal rate γ = µ(1). We verify that w is a vintage-based
sorting equilibrium if and only if m is a sorting equilibrium.

Part (ii), consumer optimality, is the same across the two notions of equilibrium by
definition.

We need only show that (µ,q) is sustained by (p, σ) in w if and only if q is sustained by
(p, σ, γ) in m.

By definition, (µ,q) is sustained by (p, σ) in w, whenever for every x ∈ [0, 1]:

µ(x) = µ(1) +

∫
y∈[x,1)

σ(y)
[
q(y)1{p(y) ≤ vh}+ (1− q(y))1{p(y) ≤ vh}

]
dy

and
q(x)µ(x) = µ(1)q(1) +

∫
y∈[x,1)

σ(y)q(y)1{p(y) ≤ vh}dy

.
And q is sustained in (p, σ, γ) in m whenever for every x ∈ [0, 1):

q(x)Sm(x) = γq(1−) +

∫
y∈[x,1)

σ(y)q(y)1{p(y) ≤ vh}dy,

66



where

Sm(x) = γ +

∫
y∈(x,1)

σ(y)
[
q(y)1{p(y) ≤ vh}+ (1− q(y))1{p(y) ≤ vh}

]
dy, ∀x ∈ (0, 1)

Note that we can replace γq(1−) with γq(1) in the above: if γ > 0, then q(·) can only be
sustained if it is continuous at 1 by Lemma 3.

If we take γ = µ(1), the two systems are equivalent. For every x ∈ (0, 1), the downstream
sales at location x in m coincide with the mass of goods having vintage x in w.

H Omitted Proofs for Section 6.1

Proof of Proposition 4. Fix some sorting equilibrium m = (p, D,q, γ). By Proposition 7, it
is a x̂-threshold market outcome for some outlet threshold x̂. Clearly, m is suboptimal if
it has zero sales. As we are allowing for disposal, non-zero sales no longer imply that some
consumers must visit outlets. We must consider two cases.
Case 1: Outlets are visited. Suppose that the sales are positive and some consumers
shop at outlet locations

∫
y∈[x̂,1) dD(y) > 0. By Lemma 7, the seller’s payoff is:

V S(p, D,q, γ) = TS(p, D,q, γ)− q(x̂)(vh − vl)

=

(∫
y∈[x̂,1)

dD(y) + γ

)
(1− q(x̂))

(
π

1− π
vh + vl

)
− (1 + γ)q(x̂)(vh − vl)− γ(κ+ vl).

For a fixed outlet consumer share
∫
y∈[x̂,1) dD(y), seller’s payoff is decreasing in q(x̂). If D has

finitely many visited non-outlet locations, then q(x̂) > λ
(∫

y∈[x̂,1) dD(y)
)

by Lemma 9.
But similar to Lemma 10, we can construct a market outcome with a uniform shopping

strategy that will result in the quality composition exactly λ
(∫

y∈[x̂,1) dD(y)
)

at the outlet
threshold x̂ while preserving the share of outlets to be

∫
y∈[x̂,1) dD(y). Hence, the seller can

improve upon her profit by deviating to this other sorting equilibrium with no atoms in the
consumer strategy.

Case 2: Outlets are not visited. If
∫
y∈[x̂,1) dD(y) = 0, then the seller may extract the

whole total surplus with a constant price vh:

V S(p, D,q, γ) ≤ TS(p, D,q, γ)

= γ(1− q(x̂))

(
π

1− π
vh + vl

)
− γq(x̂)(vh − vl)− γ(κ+ vl)
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As TS is decreasing in q(x̂), there is again a profitable deviation towards a sorting equilibrium
with no atoms.

I Omitted Proofs for Section 6.3

In the model with heterogeneous consumers we may describe the product flows by letting:

Dm(x) =

∫
x(θ)≤x:p(x(θ))≤θ

dF (θ)

to be the effective mass of consumers drawing goods from locations [0, x] in a market outcome
(p,x,q). Then, q is sustained by (p,x) in the model of heterogenous consumers if and only
if it is sustained in the baseline model by (p, Dm).

And a market outcome (p,x,q) is a sorting equilibrium if (i) q is sustained by (p,x) and
(ii) x is IC given (p,q).

Recall that for every market outcome m = (p,x,q), Qm(θ) is the induced allocation of
quality for type θ: Qm(θ) = q(x(θ)). Let Um be the induced consumer payoff: Um(θ) =

V B(m|θ).

Proof of Proposition 5. Neither of the results in Appendix B rely on Dm(1) = 1 (rather than
any smaller). In particular, from Lemma 5 in any market outcome with positive sales, there
is a positive mass of consumers visiting outlet locations. If the outlet threshold is

x̂ = inf{x : p(x) ≤ vl}

, then from Lemma 6, it holds a positive share of high-quality goods q(x̂) > 0. And from
Proposition 7, all locations in (x̂, 1) are outlet locations D-(a.s.). In addition, almost all such
locations hold the same quality composition of q(x̂).

Lemma 12. In every sorting equilibrium m = (p,x,q) with positive sales:

(i) Qm is increasing

(ii) and every θ > vl:

Um(θ) = Um(θ̂) +

∫ θ

θ̂

Qm(s)ds,

where

θ̂ = sup{θ : p(x(θ)) ≤ vl}.
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Proof. As q(x̂) > 0, and there is a positive measure of outlet locations in (x̂, 1), then any
type θ > vl receives a strictly positive payoff, and p(x(θ)) < θ. Similar to the proof in
Proposition 7, otherwise a consumer of type θ > vl may deviate to a location in (x̂, 1) that
has low price of at most vl and offers a positive probability of finding a high-quality good.

Then, from (IC), for any θ, θ′ > vl, θ does not have a profitable deviation towards x(θ′)

if and only if:

Um(θ) ≥ Um(θ
′) +Qm(θ

′)(θ − θ′).

Note that for any market outcome with positive total sales, θ̂ > vl, to ensure a positive
measure of outlet shoppers. Then, using the standard argument, we obtain that Qm agrees
with IC only if Qm is increasing on [θ̂, vh] and consumer’s equilibrium payoff satisfies the
envelope formula:

Um(θ) = Um(θ̂) +

∫ θ

θ̂

Qm(s)ds.

Lemma 13. In every sorting equilibrium with positive sales:

(i) if θ < θ̂, then x(θ) ≥ x̂

(ii) x is decreasing on (θ̂, vh]

Proof. Part (i). Suppose not, and there exists θ̃ < θ̂, such that x(θ) < x̂. By definition of
x̂, then θ̃ visits a non-outlet location p(x(θ̃)) > vl.

By definition of θ̂, either θ̂ visits an outlet location with quality composition quality
composition q(x̂), or there exists θ′ arbitrarily close to θ̂ visiting such location. As p(x(θ̃)) >
vl, then θ̃ does not have a profitable deviation to one of the outlet locations only if he visits
a location with a better average quality Qm(θ̃) > q(x̂). But then we obtain a contradiction
with monotonicity of Qm from Lemma 12.
Part (ii). By definition of θ̂, all consumer types above θ̂, shop at non-outlet locations
contained in (0, x̂). Suppose by a way of contradiction that there exist θ1 > θ2 > θ̂, such that
x̂ > x(θ1) > x(θ2). By Lemma 4, (1−q(x(θ1)))Sm(x(θ1)) = (1−q(x(θ2)))Sm(x(θ2)). Hence,
to satisfy the monotonicity condition for Qm, it must be that a zero mass of consumers shop
at location in [x(θ2),x(θ2)]. This is only possible if a non-empty subset of consumer types in
(θ2, θ1) visits either locations (0,x(θ1)), or locations (x(θ2), 1).
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Either way, we may find some consumer types types θ′1 > θ′2, for whom x(θ′1) > x(θ′2) and
there is a non-trivial mass of consumers shopping between their visited locations (x(θ′2),x(θ′1)).
Then, by Lemma 4, Qm(θ

′
1) < Qm(θ

′
2) violating monotonicity of Qm.

Proposition 5 now follows from Lemma 13.

Lemma 14. Suppose m = (p,x,q) is a sorting equilibrium. For a given threshold outlet
shopper θ̂, the induced allocation Qm(·) = Qθ̂(·) on [θ̂, vh], where:

Qθ̂(θ)

1−Qθ̂(θ)
= W

 π

1− π
exp

 π

1− π
− 1− F (θ)

F
(
θ̂
)(

1−Qθ̂
(
θ̂
))


and Qθ̂
(
θ̂
)

is satisfies:

ln

 π

1− π

1−Qθ̂
(
θ̂
)

Qθ̂
(
θ̂
)
 =

1

F
(
θ̂
)(

1−Qθ̂
(
θ̂
)) − 1

1− π

Proof. The proof for the shape Qθ̂(θ)) on (θ̂, vh] is analogous to Lemma 8. The expression
for Qθ̂

(
θ̂
)

follows from continuity of q(·) at x(θ̂) due to Lemma 3.

Proof of Proposition 6. If Direction. From the outlet shoppers, the seller collects revenue of
at most vl. From non-outlet shoppers, the seller’s revenue can be computed as the difference
between the total surplus and the consumers’ expected payoff:

V S(p,x,q) ≤
∫ vh

θ̂

(θQm(θ)− Um(θ))dF (θ) + F (θ̂)vl

Due to the envelope condition for the induced consumer payoff in Lemma 12, the seller’s
payoff is at most:

V S(p,x,q) ≤
∫ vh

θ̂

θQm(θ)−
(∫ θ

θ̂

Qm(s)ds

)
dF (θ) + F (θ̂)vl − Um(θ̂)(1− F (θ̂))

Applying integration by parts,

−
∫ vh

θ̂

(∫ θ

θ̂

Qm(s)ds

)
dF (θ) =

∫ vh

θ̂

(∫ θ

θ̂

Qm(s)ds

)
d(1− F (θ))
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= 0− 0−
∫ vh

θ̂

(1− F (θ))Qm(θ)dθ

So that we can rewrite the boundary on the seller’s payoff as:

V S(p,x,q) ≤
∫ vh

θ̂

Qm(θ)

(
θ − 1− F (θ)

f(θ)

)
dF (θ) + F (θ̂)vl − Um(θ̂)(1− F (θ̂))

The threshold outlet shopper θ̂ gets a payoff at least Qm(θ̂)(θ̂− vl) (as he shops at or in the
neighborhood of an outlet location):

V S(p,x,q) ≤
∫ vh

θ̂

Qm(θ)

(
θ − 1− F (θ)

f(θ)

)
dF (θ) + F (θ̂)vl −Qm(θ̂)(θ̂ − vl)(1− F (θ̂))

as the threshold outlet shopper gets a payoff at least Qm(θ̂)(θ̂− vl) (as he shops at or in the
neighborhood of an outlet location). Finally, since Qm(·) = Qx̂(·) on [θ̂, vh] by Lemma 14,
we get that the seller’s payoff is at most:

V S(p,x,q) ≤
∫ vh

θ̂

Qθ̂(θ)

(
θ − 1− F (θ)

f(θ)

)
dF (θ) + F (θ̂)vl −Qθ̂(θ̂)(θ̂ − vl)(1− F (θ̂)),

as required. Finally, the seller can achieve this bound for any θ̂ by shifting all prices up, so
that all outlets have a price of vl.
Only if direction. Let me construct a sorting equilibrium for a given outlet shopper θ̂ ∈
(vl, vh]. Let consumer strategy be defined as:

x(θ) =
1

3

(
1 +

vh − θ

vh − vl

)
Let the quality composition be specified as:

q(x) =


π, if x ≤ 1/3

Qθ̂(x−1(x)), if x ∈ [1/3,x
(
θ̂
)
]

Qθ̂
(
θ̂
)
, if x ≥ x

(
θ̂
)

It is sustained by (p,x), by construction (see Lemma 14).
For every location x ∈ [x

(
θ̂
)
, 1), set the price at vl: p(x) = vl. For all visited remaining
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locations, specify the prices from the envelope condition on the consumer payoff Um(θ):33

∀θ > θ̂ : p(x(θ)) = θ − Um(θ)

Qθ̂(θ)

= θ −
Um

(
θ̂
)

Qθ̂(θ)
−
∫ θ

θ̂

Qθ̂(s)

Qθ̂(θ)
ds

= θ −
Qθ̂
(
θ̂
)

Qθ̂(θ)
(θ̂ − vl)−

∫ θ

θ̂

Qθ̂(s)

Qθ̂(θ)
ds

For all locations that are upstream of 1/3 set prices to be prohibitively high, e.g. p(x) = vh

for all x < 1
3
.

By construction, none of the consumer types has a profitable devotion, and (p,x,q) is IC.
By Lemma 8, q is sustained by (p,x) on [0,x(θ̂)], and q is sustained on [x(θ̂), 1] by Lemma 4
(ii).

33Every type pays the price only if he finds a high-quality good.
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A Online Appendix

This section includes additional results omitted in the main Appendix of the paper. Ap-
pendix OA1 formally describes the two-store model, which was an illustration in the Intro-
duction of the paper.

Appendix OA2 constructs the sorting equilibrium for the model with multiple qualities.

OA1 Two-Store Model

This section formalizes a two-store model, which was used as an illustration in the Introduc-
tion of the paper. It derives the key comparative statics results summarized in Figure 1 in
the Introduction.

There are two stores: a flagship and an outlet. Each store holds a continuum of products
of mass 1. The goods have binary quality as in Section 3. The share of high-quality goods
at store i ∈ {f, o} is denoted as qi. Time is discrete and runs over an infinite horizon,
t ∈ {1, 2, . . . }. Each period, a mass λ ∈ (0, 1) of short-lived consumers arrives at the market.
Flagship charges a full price pf > vl, whereas the outlet sells goods at a markdown po = vl.
Consumer Behavior. Upon visiting the store, each consumer is matched to a single product
at random. The probability of getting matched to a high-quality good at location i is qi.
Each product is matched to at most one consumer. Consumers choose between the two
stores given prices and shares of high-quality goods. Let σ denote the share of consumers
who choose the flagship store. Consumers select their shopping strategy σ to maximize the
expected payoff given the prices and the quality composition:

V B(pf , σ, qf , qo) = σqf (vh − pf ) + (1− σ)qo(vh − vl).

Quality Composition Evolution. The stock reallocation is a discrete analog of the con-
tinuous model. Inventory is reallocated downstream from production to the flagship to the
outlet, to maintain both stores at their full capacity.

Suppose at the beginning of period t, the proportion of high-quality goods at each store
i ∈ {f, o} is given by qit. Consider the outlet first. At the outlet, consumers purchase any
product type they find. Therefore, total sales at the outlet in any given period equal its
consumer flow (1− σ)λ, with a share qot of these sales being of high quality. To replenish the
outlet, the seller ships inventory from the flagship equal to the total outlet sales, λ(1 − σ).
The share of high-quality goods in the shipments is the proportion of high-quality goods in
the flagship’s after-sales remaining inventory, denoted qft,a. Thus, the total change in the
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mass of high-quality items34 at the outlet is

∆qot = qft,aλ(1− σ)− qotλ(1− σ).

Next, consider the evolution of the quality composition at the flagship store. Consumers
only purchase high-quality goods there. The total mass of purchases at the flagship equals
λσqft , the mass of consumers who find a high-quality product. The total remaining stock
after purchases is then 1−λσqft , while the remaining mass of high-quality goods is qft (1−λσ).
The resulting after-sales proportion of high-quality, qft,a is equal to

qft,a = qft
(1− λσ)

1− λσqft
.

The flagship gets restocked to full capacity once consumer purchases and shipments to the
outlet are complete. The total mass of new inventory ordered from the production plant to
the flagship equals the mass of total sales at both stores in period t, which is qft λσ+λ(1−σ).
A fraction π of these new items is of high quality. Hence, the change in the flagship’s share
of high-quality items is given by

∆qft = π(qft λσ + λ(1− σ))− λσqft − qft,aλ(1− σ).

Sorting Equilibrium. The quality composition (qf , qo) is sustained by consumer strategy
σ35 when the proportion of high-quality goods at both stores remains constant over time:
∆qit = 0 for qit = qi.

Flagship price pf , consumer strategy σ, and the quality composition (qf , qo) form a sorting
if (i) (qf , qo) is sustained by consumer strategy σ and (ii) σ is consumer-optimal given
(pf , qf , qo).

OA1.1 Sorting Equilibria in a Two-Store Model

First, I fix the consumer strategy σ and analyze the quality composition it sustains. Lemma 15
shows that each consumer st

Lemma 15. If σ = 1, then any (qf , qo) ∈ [0, 1]2, such that qf = 0 is sustained by σ. For
every σ < 1, there exists a unique quality composition, (qf (σ),qo(σ)) it sustains. Moreover,

34Given the stock of either store is normalized to one, the change in the proportion of high-quality goods
at any store coincides with the change of their mass.

35We can skip the prices from the definition, as we already fixed them above vl for the flagship and at vl

for the outlet.
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(i) qf (σ) > qo(σ) > 0

(ii) both qf (·) and qo(·) are decreasing, with qf (0) = qo(0) = π,

(iii) and qf (·)/qo(·) is strictly increasing.

Proof. By definition, (qf , qo) is sustained by σ whenever:

λ(1− σ)
(1− λσ)qf

1− λσqf
− λ(1− σ)qo = 0, (14)

π(qfλσ + λ(1− σ))− λσqf − (1− λσ)qf

1− λσqf
λ(1− σ) = 0. (15)

Step 1: σ = 1. In this case, Equation (14) is satisfied for any qo, qf . And Equation (14) at
σ = 1 becomes:

πqfλ− λqf = 0.

As π < 1, the above is only satisfied when qf = 0.
Step 2: σ < 1. In this case, Equation (14) reduces to:

qo =
(1− λσ)qf

1− λσqf

That is, the outlet’s quality composition coincides with the flagship’s after-sales average
quality. In addition, if (qf , qo) is sustained by σ, then qo < qf .

To solve for qf which can be sustained by σ, define Ψ(qf , σ):

Ψ(σ, qf ) = π(σqf + (1− σ))− qfσ − δqf (1/λ− σ)− qf (1− λσ)(1− δ)

1− qfλσ
(1− σ)

Then, qf is sustained by σ whenever Ψ(qf , σ) = 0. I now show that there exists a unique
such qf for every σ. To that end, it is sufficient to show that Ψ(·, σ) is decreasing in qf for
every σ and Ψ(·, σ) changes its sign at some interior qf .
Existence. Ψ(0, σ) = π(1 − σ) ≥ 0, where the inequality is strict if and only if σ < 1. On
the other hand, Ψ(π, σ) is:

Ψ(π, σ) = π(1− σ)− σ(1− π)π − (1− σ)
π(1− λσ)

1− πσλ

=
π(1− π)λσ(1− σ)

1− πσλ
− σ(1− π)π

= −π(1− π)σ
λσ(1− π) + (1− λ)

1− πσλ
≤ 0
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Hence, for every σ < 1 there exist qf ∈ [0, 1], such that Ψ(qf , σ) = 0 (by the Intermediate
Value Theorem due to continuity of Ψ in qf ).
Uniqueness. Now, let me verify that Ψ(qf , σ) is decreasing in qf :

∂qfΨ(qf , σ) = −σ(1− π)− (1− σ)(1− λσ)

(1− qfσλ)2
< 0

Hence, an intersection with 0 is unique for every σ. I can denote such an intersection as
qf (σ). Given the uniqueness of the flagship quality composition that can be sustained by
σ, a sustained qo is also unique. To summarize, for every σ < 1, there is a unique quality
composition (qf (σ),qo(σ)) it sustains. In addition, qf (σ) > qo(σ) > 0, for ever σ < 1, and
And qf (0) = qo(0) = π.
Step 3: comparative statics of qf (σ). By an Implicit Function Theorem, we have:

∂σq
f (σ) = −∂σΨ(qf (σ), σ)/∂qfΨ(qf (σ), σ)

In Step 2, we showed ∂qfΨ(qf (σ), σ) < 0. Then, the sign of ∂σqf (σ) is determined by the
sign of ∂σΨ(qf (σ), σ). I now show that ∂σΨ(qf , σ) < 0 for every qf ≤ π.

∂σΨ(qf , σ) = −π − qf (1− π) + (1 + λ− 2λσ)
qf

1− σqfλ

− λ(1− σ)(1− λσ)

(
qf

1− σqfλ

)2

= −π − qf (1− π) + 2
(1− λσ)qf

1− σqfλ
−
(
(1− λσ)qf

1− σqfλ

)2

− (1− λ)
qf

1− σqfλ
+ (1− λ)(1− λσ)

(
qf

1− σqfλ

)2

Using

− (1− λ)
qf

1− σqfλ
+ (1− δ)(1− λ)(1− λσ)

(
qf

1− σqfλ

)2

= (1− λ)qf
(

1

1− σqfλ

)2 [
−(1− qfσλ) + qf (1− λσ)

]
≤ 0

we can bound ∂σΨ(qf , σ) by:

∂σΨ(qf , σ) ≤ −π − qf (1− π) + 2
(1− λσ)qf

1− σqfλ
−
(
(1− λσ)qf

1− σqfλ

)2

.
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Additionally, as (1−λσ)qf

1−σλqf
≤ qf and 2x − x2 increasing in x for x ≤ 1, we can further bound

the above:

∂σΨ(qf , σ) ≤ −π − qf (1− π − δ) + 2qf −
(
qf
)2 (16)

Now, I show that the Expression (16) that bounds ∂σΨ(qf , σ) is increasing in qf . Differ-
entiating it with respect to qf , we get:

∂qf
(
−π − qf (1− π) + 2qf −

(
qf
)2)

= 1 + π − 2(1− δ)qf

≥ 1 + π − 2π

= (1− π) > 0

Hence, we can bound ∂σΨ(qf , σ) by plugging qf = π in the Expression (16):

∂σΨ(qf , σ) ≤ −π − π(1− π) + 2π − π2

≤ −π − π(1− π) + 2π − π2 = 0.

Then, ∂σΨ(qf , σ) ≤ 0 and ∂σΨ(qf , σ) < 0 for qf < π.
Step 4: comparative statics for the sorting precision qf (σ)/qo(σ).

Differentiating the sorting precision with respect to σ, we get:

∂σq
f (σ)/qo(σ) = ∂σ

1− λσqf (σ)

1− λσ
=

−λqf (σ)(1− λσ) + λ(1− λσqf (σ))

(1− λσ)2

=
λ(1− qs(σ))− λσ∂σq

f (σ)

(1− λσ)2
> 0

where the we use ∂σq
f (σ) < 0 by Step 3. In addition, as qf (·) is decreasing but qf (·)/qo(·)

is increasing, then qo(·) is decreasing. This completes the proof of the lemma.

Convergence to the Steady State. I now discuss the convergence of the quality compo-
sition to the sustained steady state to interpret the sorting equilibrium.

The quality composition evolution described above assumes a constant consumer strategy.
To interpret, suppose consumers do not see the time of their arrival or the current quality
composition. In equilibrium, they correctly anticipate the long-run quality composition at
the two stores, which dominates their beliefs.

To make sure this interpretation is valid, we must verify that for a given σ, the quality
composition converges to a unique steady state. I illustrate convergence to the steady state
in Figure 8. To establish convergence, note that ∆qft only depends on qft and is decreasing
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in it. Hence, whenever qft > (<)qf (σ), ∆qft < (>)0. The quality composition at the flagship
is pushed towards the steady state. In turn, for a given qft , ∆qot is decreasing in qot . Hence,
the steady state is stable.

qft+1 − qft = 0

qot+1 − qot = 0

qo(σ)

qf (σ)

qot

qf t

Figure 8: Phase Diagram

Interior Equilibrium. We can now formulate the main result for the two-store model:
comparative statics of the interior sorting equilibrium with respect to the flagship price pf .

Proposition 9. For every flagship price pf ∈ (vl, vh), there exists at most one interior
sorting equilibrium (pf , σ, qf , qo). Moreover, in this equilibrium, if pf increases

(i) the customer share of the flagship store σ rises,

(ii) the quality composition at both stores (qf , qo) gets worse,

(iii) the sorting precision qf/qo rises,

(iv) and the total steady-state per-period sales λ[σqf + (1− σ)] decrease.

Proof. By Lemma 15, for every interior σ, there exists a unique quality composition that it
sustains. In addition, at any such equilibrium, consumers must be indifferent between the
two stores, which implies:

qf (σ)

qo(σ)
=

vh − vl

vh − pf
(IND)

By Lemma 15, the sorting precision qf (σ)
qo(σ)

is strictly increasing in σ. Then, for every price
pf , there exists at most one σ, where Equation (IND) is true. Consequently, by Lemma 15,
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for every pf there exists at most one interior sorting equilibrium. Moreover, as pf becomes
larger, the sorting precision must rise, which requires σ to increase in the interior equilibrium.
Part (i) follows. Parts (ii), (iii) then follow from Lemma 15. Finally, the steady-state sales
at this equilibrium are given by

λ[σqf (σ) + (1− σ)],

and are decreasing in σ.

OA2 Sorting Equilibrium Construction for Multiple Qualities

For any sorting equilibrium m = (p, σ,q, γ) ∈ E , and define am be the lowest-always-
purchased quality:

am ≡ min
n≥i≥1

{
i :

∫
y:p(y)>vi

σ(y)dy = 0

}
and define em be the lowest-ever-purchased quality:

em ≡ min
n≥i≥1

{
i :

∫
y:p(y)≤vi

σ(y)dy > 0

}
Proposition 10. Consider two sorting equilibria m1,m2 ∈ E with positive sales and the same
disposal rate γ ≥ 0. If they induce the same lowest-ever-purchased quality, i.e. em1 = em2,
and the same consumer surplus, i.e. V B(m1) = V B(m2), then they also induce the sale seller
profit, i.e. V S(m1) = V S(m2).

Proof. To prove Proposition 10, I characterize the construction of the sorting equilibrium with
multiple qualities. First, I show that the choice of the induced consumer payoff pins down
the lowest-always-purchased quality. Effectively, the seller picks the highest price through
her choice of the consumer surplus.

Lemma 16. If a sorting equilibrium m induces consumer payoff CS ≥ 0 and has the lowest-
purchased-quality am, then:∑

k≥am

π(k)(vk − vam−1) ≥ CS ≥
∑
k≥am

π(k)(vk − vam),
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Proof. Find the earliest visited location

ȳ = sup

{
y :

∫
x∈(0,y)

σ(x)dx = 0

}
.

Then, it must be that in any right neighborhood of ȳ, consumers shop with positive proba-
bility, and we can find a converging sequence of visited locations {zk} with zk → ȳ, such that
the consumer’s payoff is given by :

CS =
n∑

i=1

q(i|zk)(vi − p(zk))+

am is the lowest-always-purchased quality, then x̂am−1 > ȳ and by Proposition 7, p(·) ∈
(vj+1, vj) [ȳ, x̂am−1], D-a.s.. Then, along the sequence {zk}, consumer payoff is bounded by:

n∑
i=1

q(i|zk)
(
vi − va

m)
+
≤ CS ≤

n∑
i=1

q(i|zk)
(
vi − va

m−1
)
+

By Lemma 3, q(·) is continuous at ȳ, then as zk → ȳj, q(i|zk) → q(i|ȳ). As no locations are
visited on (0, ȳ), they all are outlets D-a.s.. Then, by Lemma 4 (ii): q(i|ȳ) = q(i|0) = π(i),
and we obtain: ∑

k≥am

π(k)
(
vk − va

m) ≤ CS ≤
∑
k≥am

π(k)
(
vk − va

m−1
)

as required.

Second, I characterize jumps that the purchase probabilities make when the price crosses
the product’s potential values.

Lemma 17. Consider a sorting equilibrium m = (p, σ,q, γ) ∈ E with positive total sales and
consumer surplus CS ≥ 0. For any i ∈ {am−1, em}, the purchase probability at the threshold
location x̂i = inf{x ∈ X : p(x) ≤ vi}, jumps by:

ρm(x̂i−) + (1− ρm(x̂
i−))

π(i)∑
l≤i π(l)

.

Moreover, the expected value of the product of a product conditional on purchase is constant
between any two threshold locations [x̂i, x̂i−1) and must satisfy:

Ei
m =

ρm(x̂i−)Ei+1
m + (1− ρm(x̂i−)) π(i)∑

l≤i π(l)
vi

ρm(x̂i)
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Proof. At any threshold x̂i, the probability of purchase jumps upwards by exactly q(i|x̂i), as
consumers start purchasing quality i. Given Lemma 4 (ii), there is no learning about quality
i relative to any other quality (0, x̂i) which is not purchased on this interval:

q(i|x̂i)∑
l≤i q(l|x̂i)

=
q(i|x̂i)

1− ρm(x̂i−)
=

π(i)∑
l≤i π(l)

.

Then, we can jump in the purchasing probability at x̂i must be:

ρm(x̂i) = ρm(x̂i−) + q(i|x̂i) = ρm(x̂i−) + (1− ρm(x̂
i−))

π(i)∑
l≤i π(l)

.

The part about the conditional expected value is similarly implied by Lemma 4 (ii).

Using the consumer indifference condition between all visited locations, we can derive
further restrictions on the equilibrium purchase probabilities at the threshold locations.

Lemma 18. Consider a sorting equilibrium m = (p, σ,q, γ) ∈ E with positive total sales and
consumer surplus CS ≥ 0. For any i ∈ {am−1, em}, the purchase probability at the threshold
location x̂i = inf{x ∈ X : p(x) ≤ vi} satisfies:

CS

ρm(x̂i−1−)
=

CS

ρm(x̂i)
+ vi − vi−1,

where ρm(x̂i) = ρm(x̂i−) + (1− ρm(x̂i−))
π(i)∑
l≤i π(l)

and ρm(x̂am−1−) =
CS∑

l≥am
π(l)vl∑

l≥am
π(l)

− vam−1

Proof. Lemma 17 implies the following simple identity at any threshold location:

ρ(x̂i+1)
(
Ei+1

m − vi+1
)
= ρ(x̂i+1−)

(
Ei+2

m − vi+1
)
. (17)

Step 1: indifference condition. I show that for every i ≤ am − 1 such that x̂i < 1, we must
have:

CS = ρm(x̂i−)(Ei−1
m − vi),∫

y∈[x̂i,x̂i−1)

σ(y)dy > 0.

I establish the above by induction.
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Initial Iteration: i = am− 1. If x̂am−1 < 1, then the price is below vam−1 at some locations
in any left neighborhood of x̂am−1. By definition of the lowest-always-purchased quality:∫

y∈[x̂am ,x̂am−1)

σ(y)dy > 0.

The quality composition is continuous by Lemma 3. Then, the consumer’s payoff is at least:

V B(p, σ,q, γ) = CS ≥
∑
l≥am

q(l|x̂am−1)
(
vl − vam−1

)
= ρ(x̂am−1−)

(
Eam

m − vam−1
)

Consider the last visited location with the price above vam−1:

ŷam−1 = sup
x∈[0,x̂am−1]

{∫
z∈(y,x̂am−1]

σ(y)dy = 0

}
.

Then, consumers do not visit locations in [ŷam−1, x̂
j+1] and ρ(ŷam−1) = ρ(x̂am−1−). In ad-

dition, consumers shop with a positive probability in the right neighborhood of ŷam−1. If
the consumer’s shopping strategy is optimal, there is a sequence {zl}∞l=1 converging to ŷam−1,
such that consumers obtain their payoff at each of locations {zl}∞l=1:

CS = ρ(zl)(E
am
m − p(zl)) ≤ ρ(zl)

(
Eam

m − vam−1
)

→
zl→ŷam−1

ρ(x̂am−1−)
(
Eam

m − vam−1
)

Together, the two bounds imply that:

CS = ρ(x̂am−1−)
(
Eam

m − vam−1
)

Iteration i. Suppose the statement is true for all k ≥ i + 1, and let us verify that it
must then be true for i. If x̂i = 1, then we are done. Otherwise, suppose that x̂i < 1, then
the consumer payoff is at least:

V B(p, σ,q, γ) = CS ≥ ρ(x̂i−)(Ei+1
m − vi)

If
∫ x̂i

y∈[x̂i+1,x̂i)
σ(y)dy = 0, the quality composition remains the same over an interval [x̂i+1, x̂i]

due to Lemma 4, then:

ρ(x̂i−)
(
Ei+1

m − vi+1
)
= ρ(x̂i+1)

(
Ei+1

m − vi+1
)
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Using Equation (17) from Step 1, we have:

ρ(x̂i+1−)
(
Ei+2

m − vi+1
)
= ρ(x̂i−)

(
Ei+1

m − vi+1
)
< ρ(x̂i−)

(
Ei+1

m − vi
)
≤ CS

We obtain a contradiction with the hypothesis of the induction step: CS = ρ(x̂i+1−) (Ei+2
m − vi+1).

Hence, some locations at prices between vi and vi+1 are visited:
∫ x̂i

y∈[x̂i+1,x̂i)
σ(y)dy > 0. Sim-

ilar to the proof in the initial iterative step, consumers visit locations that have a payoff
converging to ρ(x̂i−)(Ei+1

m − vi) from below. This completes the proof by induction.
Step 2. We now combine the two steps. As am is the lowest-always-purchased quality,
then q(l|x̂am) = q(l|x̂am),∀l. Conditional on purchase on the interval (0, x̂am−1), consumer
receives payoff:

Eam
m =

∑
l≥am

π(l)vl∑
l≥am

π(l)

Using Step 1, the purchase probability at x̂am−1 satisfies:

CS = ρm(x̂am−1−)
(
Eam

m − vam−1
)
= ρ(x̂am−1−)

(∑
l≥am

π(l)vl∑
l≥am

π(l)
− vam−1

)
,

which implies that ρ(x̂am−1−) is as in the statement of the lemma.
For every i ∈ {am−1, em}, the product qualities are purchased with a positive probability,

then x̂i < 1, and by Step 1:

CS = ρm(x̂i−1−)
(
Ei

m − vi−1
)
= ρm(x̂i−)

(
Ei+1

m − vi
)
.

Using Equation (17), we can replace ρm(x̂i−) (Ei+1
m − vi) with ρm(x̂i) (E

i
m − vi) in the above

to obtain:

CS

ρ(x̂i−)
=

CS

ρ(x̂i)
+ vi − vi−1.

Lemma 19. For any sorting equilibrium m = (p, σ,q, γ) ∈ E with positive total sales and
consumer surplus CS ≥ 0, if consumers purchase all quality types with positive probability,
i.e. em = 1, then:

(1− ρm(x̂em−))∑
j≤em

π(j)

am−1∑
i=em

{[
ln

(
ρm(x̂i+1)

1− ρm(x̂i+1)

1− ρm(x̂i−)

ρm(x̂i−)

)
+

ρm(x̂i+1)

1− ρm(x̂i+1)
− ρm(x̂i−)

1− ρm(x̂i−)

]∑
l≤i

π(l)

}
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=
D(x̂em)

1−D(x̂em) + γ
,

and if em > 1, then

(1− ρm(x̂em−1))∑
j≤em−1 π(j)

am−1∑
i=em−1

{[
ln

(
ρm(x̂i+1)

1− ρm(x̂i+1)

1− ρM(x̂i−)

ρm(x̂i−)

)
+

ρ(x̂i+1)

1− ρm(x̂i+1)
− ρm(x̂i−)

1− ρm(x̂i−)

]∑
l≤i

π(l)

}

=
1

γ

Proof. By Lemma 4, (1− ρ(x))Sm(x) remains constant over any (x̂i+1, x̂i), in addition since
∂xSm(x) = −ρm(x)σ(x), and we obtain that over (x̂i+1, x̂i):

∂xρ(x) = −ρm(x)(1− ρm(x))
σ(x)

Sm(x)
. (18)

Recall that em is the lowest quality that is purchased with positive probability, then we have∑
l≤em

q(l|x)Sm(x) remains constant over [0, x̂em). In addition, Lemma 4 implies there is no
relative sorting between any qualities that are not purchased over (0, x̂i). In particular, the
relative quality composition between qualities below i and qualities below em stays constant,
and for every x ∈ (x̂i+1, x̂i):

(1− ρm(x)) =
∑
l≤em

q(l|x) =
∑
l≤em

q(l|x)
∑

l≤i π(l)∑
j≤em

π(j)
.

This lets us rewrite Equation (18) as:

∂xρm(x) = −ρm(x)(1− ρm(x))
2 σ(x)

(1− ρ(x̂em−))Sm(x̂em)

∑
j≤em

π(j)∑
l≤i π(l)

−
∑

l≤i π(l)∑
j≤em

π(j)

∂xρm(x)

ρm(x)(1− ρm(x))2
=

σ(x)

(1− ρm(x̂em−))Sm(x̂em)

Integrating both sides of the above over x ∈ (x̂i+1, x̂i), we get:∑
l≤i π(l)∑

j≤em
π(j)

[
ln

(
ρm(x̂i+1)

1− ρ(x̂i+1)

1− ρm(x̂i−)

ρ(x̂i−)

)
+

ρm(x̂i+1)

1− ρm(x̂i+1)
− ρm(x̂i−)

1− ρm(x̂i−)

]
=

D(x̂i)−D(x̂i+1)

(1− ρm(x̂em−))Sm(x̂em)
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Summing up the above over all intervals [x̂am , x̂am − 1), . . . , (x̂em+1, x̂em ], we get:

(1− ρm(x̂em−))∑
j≤em

π(j)

am−1∑
i=em

{[
ln

(
ρm(x̂i+1)

1− ρm(x̂i+1)

1− ρM(x̂i−)

ρm(x̂i−)

)
+

ρ(x̂i+1)

1− ρm(x̂i+1)
− ρm(x̂i−)

1− ρm(x̂i−)

]∑
l≤i

π(l)

}

=
D(x̂em)

Sm(x̂em)
=

D(x̂em)

1−D(x̂em) + γ

When em > 1, then we can similarly sum over [x̂am , x̂am − 1), . . . , (x̂em , x̂em−1] to get:

(1− ρm(x̂em−1))∑
j≤em−1 π(j)

am−1∑
i=em−1

{[
ln

(
ρm(x̂i+1)

1− ρm(x̂i+1)

1− ρM(x̂i−)

ρm(x̂i−)

)
+

ρ(x̂i+1)

1− ρm(x̂i+1)
− ρm(x̂i−)

1− ρm(x̂i−)

]∑
l≤i

π(l)

}

=
D(x̂em−1)

Sm(x̂em−1)
=

1

γ

Finally, we derive a general formulation of the irrelevance result for the total surplus.

Lemma 20. Consider sorting equilibrium m = (p, σ,q, γ) ∈ E with positive total sales and
consumer surplus CS ≥ 0. If consumers purchase all quality types with positive probability,
i.e. em = 1, the total surplus is:

TS(m) = Sm(x̂em) (1− ρm(x̂em−))

[
em+1∑
i=am

Ei
m

(
1

1− ρm(x̂i)

∑
j≤em−1 π(j)∑

j≤i π(i)
− 1

)
+ Eem

m

]
− Eem

m γ

And if some qualities are only cleared through disposal i.e. em > 1, the total surplus is:

TS(m) = γ (1− ρm(x̂em−1))

[
em+1∑
i=am

Ei
m

(
1

1− ρm(x̂i)

∑
j≤em

π(j)∑
j≤i π(i)

− 1

)
+ Eem

m

]
− Eem

m γ

Proof. Case 1: em = 1. The total surplus is:

TS(m) =
em+1∑
i=am

Ei
m (Sm(x̂i)− Sm(x̂i−1)) + Eem

m (Sm(x̂em)− γ).

By Lemma 4, for every i ∈ {em + 1, am}: (1 − ρ(x̂i))S(x̂i) = (1 − ρ(x̂i−1−))S(x̂i−1). Then,
we can replace S(x̂i) by:

S(x̂i) =
1− ρm(x̂i−1−)

(1− ρm(x̂i))
S(x̂i−1) = S(x̂em)

em−1∏
j=i

1− ρm(x̂i+1−)

(1− ρm(x̂j))
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= S(x̂em)
1− ρm(x̂em−)

1− ρm(x̂i)

em−1∏
j=i+1

1− ρm(x̂j−)

(1− ρm(x̂j))

By Lemma 17, for each i the jump in the purchase probability satisfies:

1− ρm(x̂j−)

(1− ρm(x̂j))
=

∑
l≤j π(j)∑
l≤j π(j)

,

which implies from the above:

S(x̂i) = S(x̂em)
1− ρm(x̂em−)

1− ρm(x̂i)

∑
j≤em−1 π(j)∑

j≤i π(i)
.

TS(m) =
em+1∑
i=am

Ei
m (Sm(x̂i)− Sm(x̂i−1)) + Eem(Sm(x̂em)− γ)

= Sm(x̂em) (1− ρm(x̂em−1))

[
em+1∑
i=am

Ei
m

(
1

1− ρm(x̂i)

∑
j≤em−1 π(j)∑

j≤i π(i)
− 1

)
+ Eem

m

]
− Eem

m γ

Case 2: em > 1 is derived analogously. The only difference is that there is no jump at
x̂em−1 = 1.

Taking stock, Lemma 18 implies that the purchase probabilities at the threshold locations
are the same at the two sorting equilibria m1, m2 if they have the same consumer payoff CS.
By Lemma 17, the conditional expected value of the products is similarly the same. If
em1 = em2 = 1, by Lemma 19, both sorting equilibria have the same downstream sales at
x̂em1

and x̂em2
, respectively. Then, by Lemma 20, the two sorting equilibria have the same

total surplus.
If em1 = em2 > 1, by Lemma 19, then both equilibria have the same downstream sales at

x̂em1−1 = x̂em2−1 = 1. Both equilibria then deliver the same total surplus.
By assumption, they induce the same consumer payoff. As the total surplus is the same

across the two sorting equilibria, the seller’s payoff must be the same. This concludes the
proof.
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